Clinical Value of Stromal Cell Factor (Sdf-1) Determination in Chemotherapy-Induced Peripheral Polyneuropathy in Patients with Hematological Malignancies (Results of a Prospective Cohort Study)
- Authors: Kovtun O.P.1, Bazarnyi V.V.1, Koryakina O.V.1, Kopenkin M.A.1
-
Affiliations:
- Ural State Medical University
- Issue: Vol 79, No 3 (2024)
- Pages: 216-222
- Section: ONCOLOGY: CURRENT ISSUES
- Published: 15.08.2024
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/11609
- DOI: https://doi.org/10.15690/vramn11609
- ID: 11609
Cite item
Abstract
Background. Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common complications of chemotherapy for hemoblastoses in children, which, according to researchers, occurs in 30–100% of patients in the treatment of acute lymphoblastic leukemia (ALL). Reliable laboratory markers of this disease have not been established, while their use would be appropriate in patient monitoring.
Aims — to establish the clinical value of determining the stromal cell factor (SDF-1, CXCL12) in the laboratory monitoring of chemotherapy-induced polyneuropathy in the treatment of ALL in children.
Methods. A single-center prospective cohort non-randomized study was conducted in the period from 2019 to 2022 of patients with ALL treated with vincristine as the main treatment. Some of them developed vincristine-induced peripheral polyneuropathy as a variant of CIPN during treatment. On this basis, all patients were divided into two groups — with CIPN (main) and without peripheral polyneuropathy (comparison group). A clinical neurophysiological study was performed, as well as the determination of stromal cell factor (SDF- 1, CXCL12) in the plasma and cerebrospinal fluid (CSF) of patients at different stages of therapy.
Results. In the blood plasma of children with CIPN, the content of SDF-1 did not differ from the of healthy children and the comparison group, and during chemotherapy there was a tendency to decrease its level. In the CSF of patients of the main group the concentration of SDF-1 increased at the end of induction. The clinical value of this parameter was determined, with its content in the CSF > 410 pg/ml AUC = 0.75; OR = 2.200.
Conclusion. One of the candidates for the role of a laboratory marker of chemotherapy-induced peripheral polyneuropathy is the chemokine SDF-1, the concentration of which in the CSF increased in patients with ALL. In this study, the clinical value of this parameter has been established, on the basis of which it can be concluded that this laboratory parameter allows the diagnosis of CIPN with moderate accuracy, and the joint determination of this factor in blood and liquor slightly increases the accuracy of diagnosis.
Full Text
About the authors
Olga P. Kovtun
Ural State Medical University
Email: usma@usma.ru
ORCID iD: 0000-0002-5250-7351
SPIN-code: 9919-9048
MD, PhD, Professor, Academician of the RAS
Россия, YekaterinburgVladimir V. Bazarnyi
Ural State Medical University
Author for correspondence.
Email: vlad-bazarny@yandex.ru
ORCID iD: 0000-0003-0966-9571
SPIN-code: 4813-8710
MD, PhD, Professor
Россия, YekaterinburgOksana V. Koryakina
Ural State Medical University
Email: koryakina09@mail.ru
ORCID iD: 0000-0002-4595-1024
SPIN-code: 4880-6913
MD, PhD, Associate Professor
Россия, YekaterinburgMaksim A. Kopenkin
Ural State Medical University
Email: maximkopenkin@yandex.ru
ORCID iD: 0000-0002-6092-3734
SPIN-code: 5660-5708
PhD Student
Россия, Yekaterinburg
References
- Brown P, Inaba H, Annesley C, et al. Pediatric Acute Lymphoblastic Leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020;18(1):81–112. doi: https://doi.org/10.6004/jnccn.2020.0001
- Hjalgrim LL, Rostgaard K, Schmiegelow K, et al. Age‐ and sex‐specific incidence of childhood leukemia by immunophenotype in the Nordic countries. J Natl Cancer Inst. 2003;95(20):1539–1544. doi: https://doi.org/10.1093/jnci/djg064
- Pui CH, Yang JJ, Hunger SP, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33(27): 2938–2948. doi: https://doi.org/10.1200/JCO.2014.59.1636
- Политова Е.А., Румянцев А.Г., Заваденко Н.Н., и др. Полинейропатии и миопатии при остром лимфобластном лейкозе в педиатрической практике // Детская больница. — 2015. — № 1 (59). — С. 11–18. [Politova EA, Rumyancev AG, Zavadenko NN, i dr. Polinejropatii i miopatii pri ostrom limfoblastnom lejkoze v pediatricheskoj praktike. Detskaya Bol’nica. 2015;1(59):11–18. (In Russ.)]
- Kelley MR, Fehrenbacher JC. Challenges and opportunities identifying therapeutic targets for chemotherapy-induced peripheral neuropathy resulting from oxidative DNA damage. Neural Regen Res. 2017;12(1):72–74. doi: https://doi.org/10.4103/1673-5374.198986
- Seretny M, Currie GL, Sena ES, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain. 2014;15512:2461–2470. doi: https://doi.org/10.1016/j.pain.2014.09.020
- Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: A review of recent findings. Crit Rev Oncol Hematol. 2020;145:102831. doi: https://doi.org/10.1016/j.critrevonc.2019.102831
- Ковтун О.П., Базарный В.В., Корякина О.В. Потенциальные лабораторные маркеры винкристин-индуцированной периферической невропатии // Вестник РАМН. — 2022. — Т. 77. — № 3. — С. 208–213. [Kovtun OP, Bazarnyi VV, Koryakina OV. Рotential Laboratory Markers of Vincristine-Induced Peripheral Neuropathy. Annals of the Russian Academy of Medical Sciences. 2022;77(3):208–213. (In Russ.)] doi: https://doi.org/10.15690/vramn2007
- Burgess J, Ferdousi M, Gosal D, et al. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther. 2021;9(2):385–450. doi: https://doi.org/10.1007/s40487-021-00168-y
- Hu LY, Mi WL, Wu GC, et al. Prevention and Treatment for Chemotherapy-Induced Peripheral Neuropathy: Therapies Based on CIPN Mechanisms. Curr Neuropharmacol. 2019;17(2):184–196. doi: https://doi.org/10.2174/1570159X15666170915143217
- Makker PGS, Duffy SS, Lees JG, et al. Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS One. 2017;12(1):e0170814. doi: https://doi.org/10.1371/journal.pone.0170814
- Lees JG, Makker PG, Tonkin RS, et al. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer. 2017;73:22–29. doi: https://doi.org/10.1016/j.ejca.2016.12.006
- Zhou L, Ao L, Yan Y, et al. The Therapeutic Potential of Chemokines in the Treatment of Chemotherapy- Induced Peripheral Neuropathy. Curr Drug Targets. 2020;21(3):288–301. doi: https://doi.org/10.2174/1389450120666190906153652
- Tashiro K, Tada H, Heilker R, et al. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science. 1993;261(5121):600–603. doi: https://doi.org/10.1126/science.8342023
- Filippo TRM, Galindo LT, Barnabe GF, et al. CXCL12 N-terminal end is sufficient to induce chemotaxis and proliferation of neural stem/progenitor cells. Stem Cell Res. 2013;11(2):913–925. doi: https://doi.org/10.1016/j.scr.2013.06.003
- Kassondra H, Stabenfeldt SE. Using biomaterials to modulate chemotactic signaling for central nervous system repair. Biomed Mater. 2018;13(4):044106. doi: https://doi.org/10.1088/1748-605X/aaad82
- Opatz J, Küry P, Schiwy N, et al. SDF-1 stimulates neurite growth on inhibitory CNS myelin. Mol Cell Neurosci. 2009;40(2):293–300. doi: https://doi.org/10.1016/j.mcn.2008.11.002
- Ardelt AA, Bhattacharyya BJ, Belmadani A, et al. Stromal derived growth factor-1 (CXCL12) modulates synaptic transmission to immature neurons during post-ischemic cerebral repair. Exp Neurol. 2013;248:246–253. doi: https://doi.org/10.1016/j.expneurol.2013.06.017
- Li S, Wei M, Zhou Z, et al. SDF-1α induces angiogenesis after traumatic brain injury. Brain Res. 2012;1444:76–86. doi: https://doi.org/10.1016/j.brainres.2011.12.055
- Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci. 2014;8:65. doi: https://doi.org/10.3389/fncel.2014.00065
- ГОСТ Р 53022.3-2008 Технологии лабораторные клинические. Требования к качеству клинических лабораторных исследований. Ч. 3. Правила оценки клинической информативности лабораторных тестов: национальный стандарт Российской Федерации. Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии Российской Федерации от 18 декабря 2008 г. № 557-ст. — М.: Стандартинформ, 2009. — 18 с. [GOST R 53022.3-2008 Tekhnologii laboratornye klinicheskie. Trebovaniya k kachestvu klinicheskih laboratornyh issledovanij. Ch. 3. Pravila ocenki klinicheskoj informativnosti laboratornyh testov: nacional’nyj standart Rossijskoj Federacii. Utverzhden i vveden v dejstvie prikazom Federal’nogo agentstva po tekhnicheskomu regulirovaniyu i metrologii Rossijskoj Federacii ot 18 dekabrya 2008 g. № 557-st. Moscow: Standartinform; 2009. 18 s. (In Russ.)]
- Burgess J, Ferdousi M, Gosal D, et al. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther. 2021;9(2):385–450. doi: https://doi.org/10.1007/s40487-021-00168-y
- Watson AES, Goodkey K, Footz T, et al. Regulation of CNS precursor function by neuronal chemokines. Neurosci Lett. 2020;715:134533. doi: https://doi.org/10.1016/j.neulet.2019.134533
- Williams JL, Holman DW, Klein RS. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci. 2014;8:154. doi: https://doi.org/10.3389/fncel.2014.00154
- Do HTT, Lee CH, Cho J. Chemokines and their Receptors: Multifaceted Roles in Cancer Progression and Potential Value as Cancer Prognostic Markers. Cancers (Basel). 2020;12(2):287. doi: https://doi.org/10.3390/cancers12020287
- Uchi Y, Takeuchi H, Matsuda S, et al. CXCL12 expression promotes esophageal squamous cell carcinoma proliferation and worsens the prognosis. BMC Cancer. 2016;16:514. doi: https://doi.org/10.1186/s12885-016-2555-z
- Khandany BK, Hassanshahi G, Khorramdelazad H. et al. Evaluation of circulating concentrations of CXCL1 (Gro-α), CXCL10 (IP- 10) and CXCL12 (SDF-1) in ALL patients prior and post bone marrow transplantation. Pathol Res Pract. 2012;208(10):615–619. doi: 10.1016/j.prp.2012.06.009.