Personalized Medicine

Cover Page

Cite item


Evidence-based medicine at the end of the 20th century saved many lives, allowing us to reliably screen out pseudoscientific and dangerous methods. The medical community has gained access to weighted “standards” for treating common diseases. Unfortunately, this algorithmic approach pays for the breadth of coverage with low specificity of recommendations. In this article, the necessity and timeliness of the next step - the transition from broad clinical generalizations to working with the individual characteristics of the patient - are substantiated. The discussion opens with a forced criticism of the current state of clinical medicine, which suffers from economic inefficiency and low accuracy of pharmacotherapy. According to the FDA reference agency, up to 75% of patients do not respond to medications, which is very alarming and requires a change in the dominant paradigm in medicine. Next, we turn to the scientific and technological prerequisites of personalized healing, focusing on the achievements of molecular genetics and the value of genetic counseling. We also deal with issues of genome-wide sequencing and rapidly developing post-genomic methods. Taking into account international experience, we consider organizational and methodological difficulties, as well as ways to overcome them on the way to personalization of medicine. Key points of the article are illustrated by case reports from the clinical practice of the Endocrinology research centre (Moscow).

About the authors

Ivan I. Dedov

Endocrinology Research Centre; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
ORCID iD: 0000-0002-8175-7886

MD, PhD, Professor

11 Dm.Ulyanova street, Moscow, 117036

SPIN-cod: 5873-2280

Russian Federation


  1. Sur RL, Dahm P. History of evidence-based medicine. Indian J Urol. 2011;27(4):487–489. doi: 10.4103/0970-1591.91438.
  2. [Internet]. Paving the Way for Personalized Medicine: FDA’s Role in a New Era of Medical Product Development. 2013 [cited 2018 Feb 20]. Available from:
  3. Jain KK. Textbook of personalized medicine. 2nd ed. New York: Springer; 2009. doi: 10.1007/978-1-4419-0769-1.
  4. [Internet]. NCBI. Literature. PubMed Central (PMC) [cited 2018 Feb 20]. Available from:
  5. Schleidgen S, Klingler C, Bertram T, et al. What is personalized medicine: sharpening a vague term based on a systematic literature review. BMC Med Ethics. 2013;14:55. doi: 10.1186/1472-6939-14-55.
  6. O’Donnell JC. Personalized medicine and the role of health economics and outcomes research: issues, applications, emerging trends, and future research. Value Health. 2013;16(6 Suppl):S1–S3. doi: 10.1016/j.jval.2013.06.004.
  7. Report of the USA President’s Council of Advisors on Science and Technology. Priorities for Personalized Medicine [Internet]. 2008 [cited 2018 Feb 20]. Available from:
  8. Terkola R, Antoñanzas F, Postma M. Economic evaluation of personalized medicine: a call for real-world data. Eur J Health Econ. 2017;18(9):1065–1067. doi: 10.1007/s10198-017-0890-x.
  9. Abrahams E, Silver M. The case for personalized medicine. J Diabetes Sci Technol. 2009;3(4):680–684. doi: 10.1177/193229680900300411.
  10. Дедов И.И., Терехин С.А., Калашников В.Ю., и др. Одномоментная эндовакулярная реваскуляризация почки, нижней конечности и эндоваскулярная реконструкция аневризмы брюшной аорты у пациента с сахарным диабетом 2 типа // Ангиология и сосудистая хирургия. ― 2012. ― T.18. ― №3 ― C. 51–56.
  11. [Internet]. National Human Genome Research Institute. The Cost of Sequencing a Human Genome [cited 2018 Feb 20]. Available from:
  12. [Internet]. National Human Genome Research Institut. DNA Sequencing Costs: Data. Overview [cited 2018 Feb 20]. Available from:
  13. Философско-антропологические основания персонализированной медицины (междисциплинарный анализ): сб. науч. ст. / Под ред. Тищенко П.Д. ― М.: Издательство Московского гуманитарного университета; 2016.
  14. Далантаева Н.С., Дедов И.И. Генетические и обменные особенности семейных изолированных аденом гипофиза // Ожирение и метаболизм. ― 2013. ― T.10. ― №2 ― C. 3–10. doi: 10.14341/2071-8713-4817.
  15. Igreja S, Chahal HS, King P, et al. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Hum Mutat. 2010;31(8):950–960. doi: 10.1002/humu.21292.
  16. Далантаева Н.С., Пигарова Е.А., Дзеранова Л.К., и др. Новые возможности в лечении и ведении акромегалии // Ожирение и метаболизм. ― 2012. ― T.9. ― №3 ― C. 29–32. doi: 10.14341/2071-8713-4970
  17. Wells SA, Asa SL, Dralle H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610. doi: 10.1089/thy.2014.0335.
  18. Lenders JW, Duh QY, Eisenhofer G, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–1942. doi: 10.1210/jc.2014-1498.
  19. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363(24):2339–2350. doi: 10.1056/NEJMra0906948.
  20. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–1341. doi: 10.1126/science.1142364.
  21. Потапов В.А. Поиск генетических маркеров, определяющих предрасположенность к сахарному диабету 2 типа: Автореф. дис. … канд. биол. наук. ― M; 2010. ― 25 C.
  22. Kong Y, Sharma RB, Nwosu BU, Alonso LC. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia. 2016;59(8):1579–1593. doi: 10.1007/s00125-016-3967-7.
  23. ‘t Hart LM, Simonis-Bik AM, Nijpels G, et al. Combined risk allele score of eight type 2 diabetes genes is associated with reduced first-phase glucose-stimulated insulin secretion during hyperglycemic clamps. Diabetes. 2010;59(1):287–292. doi: 10.2337/db09-0736.
  24. Hu C, Jia W. Linking MTNR1B variants to diabetes: the role of circadian rhythms. Diabetes. 2016;65(6):1490–1492. doi: 10.2337/dbi16-0012.
  25. Lane JM, Chang AM, Bjonnes AC, et al. Impact of common diabetes risk variant in MTNR1B on sleep, circadian, and melatonin physiology. Diabetes. 2016;65(6):1741–1751. doi: 10.2337/db15-0999.
  26. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–894. doi: 10.1126/science.1141634.
  27. Feng X, Tucker KL, Parnell LD, et al. Insulin receptor substrate 1 (IRS1) variants confer risk of diabetes in the Boston Puerto Rican Health Study. Asia Pac J Clin Nutr. 2013;22(1):150–159. doi: 10.6133/apjcn.2013.22.1.09.
  28. Ruggenenti P, Bettinaglio P, Pinares F, Remuzzi G. Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin J Am Soc Nephrol. 2008;3(5):1511–1525. doi: 10.2215/CJN.04140907.
  29. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. ― 8-й выпуск // Сахарный диабет. ― 2017. ― Т.20. ― №1S ― C. 1–121. doi: 10.14341/DM20171S8.
  30. Satoh M, Asayama K, Kikuya M, et al. Nocturnal blood pressure decline based on different time intervals and long-term cardiovascular risk: the Ohasama Study. Clin Exp Hypertens. 2018;40(1):1–7. doi: 10.1080/10641963.2016.1259324.
  31. Legrain P, Aebersold R, Archakov A, et al. The human proteome project: current state and future direction. Mol Cell Proteomics. 2011;10(7):M111.009993. doi: 10.1074/mcp.M111.009993.
  32. Duarte T, Spencer C. Personalized proteomics: the future of precision medicine. Proteomes. 2016;4(4):29. doi: 10.3390/proteomes4040029.
  33. Archakov A, Aseev A, Bykov V, et al. Gene-centric view on the human proteome project: the example of the Russian roadmap for chromosome 18. Proteomics. 2011;11(10):1853–1856. doi: 10.1002/pmic.201000540.
  34. Dreesen J, Destouni A, Kourlaba G, et al. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study. Eur J Hum Genet. 2014;22(8):1012–1018. doi: 10.1038/ejhg.2013.277.
  35. Chen CK, Yu HT, Soong YK, Lee CL. New perspectives on preimplantation genetic diagnosis and preimplantation genetic screening. Taiwan J Obstet Gynecol. 2014;53(2):146–150. doi: 10.1016/j.tjog.2014.04.004.
  36. Shefi S, Raviv G, Rienstein S, et al. Fish based preimplantation genetic diagnosis to prevent DiGeorge syndrome. J Assist Reprod Genet. 2009;26(7):411–413. doi: 10.1007/s10815-009-9334-6.
  37. Baranov VS. Genome paths: a way to personalized and predictive medicine. Acta Naturae. 2009;1(3):70–80.
  38. Mutch DM, Clément K. Unraveling the genetics of human obesity. PLoS Genet. 2006;2(12):e188. doi: 10.1371/journal.pgen.0020188.
  39. Brother K, Rothstein M. Ethical, legal and social implications of incorporating personalized medicine into healthcare. Per Med. 2015;12(1):43–51. doi: 10.2217/pme.14.65.
  40. [Internet]. Congress of the USA. S.3822 ― Genomics and Personalized Medicine Act of 2006 [cited 2019 Jan 15]. Available from:
  41. [Internet]. Congress of the USA. H.R.6498 ― Genomics and Personalized Medicine Act of 2008 [cited 2019 Jan 15]. Available from:
  42. [Internet]. Congress of the USA. H.R.5440 ― Genomics and Personalized Medicine Act of 2010 [cited 2019 Jan 15]. Available from:

Copyright (c) 2019 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies