Prediction and management model of preterm birth

Cover Page
Open Access Open Access
Restricted Access Subscription or Fee Access

Abstract


Background: It seems relevant to study the contribution of socio-demographic, somatic and obstetric-gynecological factors in the implementation of preterm birth.

Aims: Assessment of the prognostic significance of socio-demographic, obstetric-gynecological and somatic factors in the prediction of preterm birth and associated adverse pregnancy outcomes with subsequent validation of the prognostic model.

Materials and methods: Cohort study with a mixed cohort. A retrospective assessment of socio-demographic factors, harmful habits, obstetric and gynecological pathology, somatic diseases, course and outcomes of pregnancy was carried out with the assessment of the status of newborns in 1246 women with subsequent construction of a predictive model of preterm birth and adverse outcomes of pregnancy using Regression with Optimal Scaling and its prospective validation in 100 women. Results: The most significant predictors, that increase the chance of preterm birth and adverse pregnancy outcomes, were history of premature birth, irregular monitoring during pregnancy, history of pelvic inflammatory disease, smoking, obesity, the onset of sexual activity up to 16 years, cardiovascular and endocrine diseases. Intellectual job reduced the chance of preterm birth and adverse pregnancy outcomes This multivariate predictive model has a diagnostic value. The score of risk factors ≥25 points had a sensitivity of 73%, a specificity of 71%, the area under the ROC curve (AUC) 0.76 (good quality), p<0.001. After stratification of high-risk groups by maternal and perinatal pathology the following list of diagnostic and therapeutic measures is introduced and actively implemented in antenatal clinics. To stratificate this model, we prospectively analyze the course and pregnancy outcomes of 100 women divided into 2 groups: group 1 ― 50 women with preterm delivery, group 2 ― 50 women with term delivery. A total score of 25 and above had 44% of women in group 1 and only 10% of women in group 2 (sensitivity 81.4%, specificity 61.6%, positive predictive value 44%, negative predictive value 90%, positive likelihood ratio 2.2 [1.5−3.0], negative likelihood ratio 0.3 [0.13−0.68]).

Conclusions: We have proposed a model for predicting preterm birth and delivery and perinatal losses using the available characteristics of pregnant women from early pregnancy with moderate indicators of diagnostic value. Further validation of the model in the general population of pregnant women is required.


Yuriy A. Semenov

South Ural State Medical University

Email: guzchelopc@mail.ru
ORCID iD: 0000-0002-4109-714X
SPIN-code: 1461-0646
http://www.chelsma.ru

Russian Federation, 64, Vorovsky street, Chelyabinsk, 454092

MD, PhD

Valentina F. Dolgushina

South Ural State Medical University

Email: dolgushinavf@yandex.ru
ORCID iD: 0000-0002-3929-7708
SPIN-code: 5319-7911
http://www.chelsma.ru

Russian Federation, 64, Vorovsky street, Chelyabinsk, 454092

MD, PhD, Professor

Marina G. Moskvicheva

South Ural State Medical University

Email: moskvichevamg@mail.ru
ORCID iD: 0000-0001-6579-5869
SPIN-code: 7056-8287
http://www.chelsma.ru

Russian Federation, 64, Vorovsky street, Chelyabinsk, 454092

MD, PhD, Professor

Vasiliy S. Chulkov

South Ural State Medical University

Author for correspondence.
Email: vschulkov@rambler.ru
ORCID iD: 0000-0002-0952-6856
SPIN-code: 8001-0051
http://www.chelsma.ru

Russian Federation, 64, Vorovsky street, Chelyabinsk, 454092

MD, PhD

  1. Farina A, Simonazzi G, Rapacchia G, et al. Prospective evaluation of ultrasound and biochemical-based multivariable models for the prediction of late preeclampsia. Pregnancy Hypertens. 2011;1(3–4):260. doi: 10.1016/j.preghy.2011.08.039.
  2. Kleinrouweler CE, Cheong-See FM, Collins GS, et al. Prognostic models in obstetrics: available, but far from applicable. Am J Obstet Gynecol. 2016;214(1):79–90.e36. doi: 10.1016/j.ajog.2015.06.013.
  3. Herraiz I, Arbués J, Camaño I, et al. Application of a first-trimester prediction model for pre-eclampsia based on uterine arteries and maternal history in high-risk pregnancies. Prenat Diagn. 2009;29(12):1123–1129. doi: 10.1002/pd.2383.
  4. Lawn JE, Kinney M. Preterm birth: now the leading cause of child death worldwide. Sci Transl Med. 2014;6(263):263ed21. doi: 10.1126/scitranslmed.aaa2563.
  5. Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385(9966):430–440. doi: 10.1016/S0140-6736(14)61698-6.
  6. Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371(9608):261–269. doi: 10.1016/S0140-6736(08)60136-1.
  7. Kleinrouweler CE, Cheong-See FM, Collins GS, et al. Prognostic models in obstetrics: available, but far from applicable. Am J Obstet Gynecol. 2016;214(1):79–90.e36. doi: 10.1016/j.ajog.2015.06.013.
  8. Sananès N, Langer B, Gaudineau A, et al. Prediction of spontaneous preterm delivery in singleton pregnancies: where are we and where are we going? A review of literature. J Obstet Gynaecol. 2014;34(6):457–461. doi: 10.3109/01443615.2014.896325.
  9. Catley C, Frize M, Walker CR, Petriu DC. Predicting high-risk preterm birth using artificial neural networks. IEEE Trans Inf Technol Biomed. 2006;10(3):540–549. doi: 10.1109/titb.2006.872069.
  10. Raglan GB, Lannon SM, Jones KM, Schulkin J. Racial and ethnic disparities in preterm birth among american indian and alaska native women. Matern Child Health J. 2016;20(1):16–24. doi: 10.1007/s10995-015-1803-1.
  11. Culhane JF, Goldenberg RL. Racial disparities in preterm birth. Semin Perinatol. 2011;35(4):234–239. doi: 10.1053/j.semperi.2011.02.020.
  12. York TP, Strauss JF, Neale MC, Eaves LJ. Racial differences in genetic and environmental risk to preterm birth. PLoS One. 2010;5(8):e12391. doi: 10.1371/journal.pone.0012391.
  13. Meertens LJ, van Montfort P, Scheepers HC, et al. Prediction models for the risk of spontaneous preterm birth based on maternal characteristics: a systematic review and independent external validation. Acta Obstet Gynecol Scand. 2018. doi: 10.1111/aogs.13358.
  14. Семенов Ю.А., Чулков В.С., Сахарова В.В., Москвичева М.Г. Оценка факторов риска развития преждевременных родов у женщин с недоношенной беременностью // Современные проблемы науки и образования. — 2015. — №4. — С. 493. [Semenov YuA, Chulkov VS, Sakharova VV, Moskvicheva MG. Assessment of risk factors for preterm birth in women with preterm pregnancy. Sovremennye problemy nauki i obrazovaniya. 2015;(4):493. (In Russ).]
  15. Гондаренко А.С., Галина Т.В., Смирнова Т.В., и др. Шкала риска сверхранних преждевременных родов // Доктор.Ру. — 2016. — Т.124. — №7. — С. 53–56. [Gondarenko AS, Galina TV, Smirnova TV, et al. Scale for assessing risk of extremely preterm birth. Doctor.Ru. 2016;7(124):53–56. (In Russ).]
  16. Sananes N, Meyer N, Gaudineau A, et al. Prediction of spontaneous preterm delivery in the first trimester of pregnancy. Eur J Obstet Gynecol Reprod Biol. 2013;171(1):18–22. doi: 10.1016/j.ejogrb.2013.07.042.
  17. Beta J, Akolekar R, Ventura W, et al. Prediction of spontaneous preterm delivery from maternal factors, obstetric history and placental perfusion and function at 11-13 weeks. Prenat Diagn. 2011;(1):75–83. doi: 10.1002/pd.2662.

Supplementary files

Supplementary Files Action
1. Fig. ROC analysis of the model for predicting perinatal loss in preterm birth View (98KB) Indexing metadata

Views

Abstract - 362

PDF (Russian) - 5

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies