DISTURBANCES OF CARDIOVASCULAR SYSTEM IN PERSONS WITH CHRONIC SPINAL CORD INJURY DURING EXERCISE AND PARTICIPATION IN PARALYMPIC SPORTS

Cover Page


Cite item

Full Text

Abstract

Spinal cord injury (SCI) is a devastating condition that affects mostly young and active individuals but also impacts their family members and results in significant challenges for medical care and social integration. In addition to obvious motor impairment (tetraplegia/paraplegia), these individuals also suffer from a variety of less obvious but devastating autonomic nervous system dysfunctions that negatively impact their health and affect various aspects of daily living. Physical training and sports are essential components of rehabilitation and leaser activities for people with disabilities. Number of individuals with SCI who run an active lifestyle is increasing. Physical activity puts an additional stress on various organs and body systems. The presented manuscript describes in detail cardiovascular dysfunctions in physically active individuals with a SCI, including those engaged in Paralympic sports: low resting blood pressure, orthostatic hypotension, arrhythmias, and the phenomenon of «autonomic dysreflexia». We also address issues related to self-induced episodes of autonomic dysreflexia in order to improve athletic performance ― a phenomenon known as «boosting». Boosting may improve sports performance in short term but is associated with the risk of serious cardiovascular disorders and even sudden death. This practice is considered as anti-doping rule violation by the International Paralympic Committee and thus prohibited. Understanding of the changes occurring in the body of a physically active individual after SCI is necessary for general practitioners, neurologists, rehabilitation specialists, sports medicine physicians, as well as for specialists of adapted physical education and sports.

About the authors

Andrey V. Krassioukov

University of British Columbia

Email: krassioukov@icord.org
ORCID iD: 0000-0002-0022-7972

MD, PhD, Professor.

Vancouver.

SPIN: 3732-5282

Canada

Evgeny V. Mashkovskiy

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: emash@me.com
ORCID iD: 0000-0002-5675-3488

MD, PhD.

Moscow.

SPIN: 6546-6314

 

Russian Federation

Evgeny E. Achkasov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: 2215.g23@rambler.ru
ORCID iD: 0000-0001-9964-5199

MD, PhD, Professor

Moscow.

SPIN: 5291-0906

Russian Federation

Elena M. Kashchenko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: kashchenko.elena@mail.ru
ORCID iD: 0000-0001-5181-4379

MD.

Moscow.

SPIN: 8242-0045

Russian Federation

References

  1. who. int [Internet]. Spinal cord injury [updated 2013 Nov 19; cited 2018 Apr 12]. Available from: http://www.who.int/mediacentre/factsheets/fs384/en/.
  2. Singh A, Tetreault L, Kalsi-Ryan S, et al. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309−331. doi: 10.2147/clep.s68889.
  3. Морозов И.Н., Млявых С.Г. Эпидемиология позвоночно-спинномозговой травмы (обзор). // Медицинский альманах. ― 2011. ― №4 ― С. 157−159.
  4. Partida E, Mironets E, Hou S, Tom VJ. Cardiovascular dysfunction following spinal cord injury. Neural Regen Res. 2016;11(2):189−194. doi: 10.4103/1673-5374.177707.
  5. Garshick E, Kelley A, Cohen SA, et al. A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord. 2005;43(7):408–416. doi: 10.1038/sj.sc.3101729.
  6. Cragg JJ, Noonan VK, Krassioukov A, Borisoff J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology. 2013;81(8):723–728. doi: 10.1212/wnl.0b013e3182a1aa68.
  7. Wu JC, Chen YC, Liu L, et al. Increased risk of stroke after spinal cord injury: a nationwide 4-year follow-up cohort study. Neurology. 2012;78(14):1051–1057. doi: 10.1212/wnl.0b013e31824e8eaa.
  8. Grigorean VT, Sandu AM, Popescu M, et al. Cardiac dysfunctions following spinal cord injury. J Med Life. 2009;2(2):133–145.
  9. Wecht JM, De Meersman RE, Weir JP, et al. Cardiac autonomic responses to progressive head-up tilt in individuals with paraplegia. Clin Auton Res. 2003;13(6):433–438. doi: 10.1007/s10286-003-0115-5.
  10. Winslow EB, Lesch M, Talano JV, Meyer PR. Spinal cord injuries associated with cardiopulmonary complications. Spine (Phila Pa 1976). 1986;11(8):809–812. doi: 10.1097/00007632-198610000-00014.
  11. Claydon VE, Hol AT, Eng JJ, Krassioukov AV. Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil. 2006;87(8):1106–1114. doi: 10.1016/j.apmr.2006.05.011.
  12. Claydon VE, Elliott SL, Sheel AW, Krassioukov A. Cardiovascular responses to vibrostimulation for sperm retrieval in men with spinal cord injury. J Spinal Cord Med. 2006;29(3):207–216. doi: 10.1080/10790268.2006.11753876.
  13. Hector SM, Biering-Sørensen T, Krassioukov A, Biering-Sørensen F. Cardiac arrhythmias associated with spinal cord injury. J Spinal Cord Med. 2013;36(6):591–599. doi: 10.1179/2045772313y.0000000114.
  14. Prakash M, Raxwal V, Froelicher VF, et al. Electrocardiographic findings in patients with chronic spinal cord injury. Am J Phys Med Rehabil. 2002;81(8):601–608. doi: 10.1097/00002060-200208000-00008.
  15. Leaf DA, Bahl RA, Adkins RH. Risk of cardiac dysrhythmias in chronic spinal cord injury patients. Paraplegia. 1993;31(9):571–575. doi: 10.1038/sc.1993.92.
  16. Красюков А.В. Расстройства вегетативной нервной системы, связанные с повреждением спинного мозга. Научный обзор. // Вестник восстановительной медицины. ― 2014. ― №3 ― С. 94−109.
  17. Hartkopp A, Brønnum-Hansen H, Seidenschnur A-M, Biering-Sørensen F. Survival and cause of death after traumatic spinal cord injury. A long-term epidemiological survey from Denmark. Spinal Cord. 1997;35(2):76–85. doi: 10.1038/sj.sc.3100351.
  18. Lee YH, Lee JH, Kim SH, et al. Hemodynamic adaptations to regular exercise in people with spinal cord injury. Ann Rehabil Med. 2017;41(1):25−33. doi: 10.5535/arm.2017.41.1.25.
  19. Gass GC, Watson J, Camp EM, et al. The effects of physical training on high level spinal lesion patients. Scand J Rehabil Med. 1980;12(2):61−65.
  20. West CR, Mills P, Krassioukov AV. Influence of the neurological level of spinal cord injury on cardiovascular outcomes in humans: a meta-analysis. Spinal Cord. 2012;50(7):484–492. doi: 10.1038/sc.2012.17.
  21. Wecht JM, Bauman WA. Decentralized cardiovascular autonomic control and cognitive deficits in persons with spinal cord injury. J Spinal Cord Med. 2013;36(2):74–81. doi: 10.1179/2045772312y.0000000056.
  22. Claydon VE, Krassioukov AV. Orthostatic hypotension and autonomic pathways after spinal cord injury. J Neurotrauma. 2006;23(12):1713–1725. doi: 10.1089/neu.2006.23.1713.
  23. Phillips AA, Warburton DE, Ainslie PN, Krassioukov AV. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-١ agonist midodrine hydrochloride. J Cereb Blood Flow Metab. 2014;34(5):794–801. doi: 10.1038/jcbfm.2014.3.
  24. Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine. J Appl Physiol (1985). 2014;116(6):645–653. doi: 10.1152/japplphysiol.01090.2013.
  25. Illman A, Stiller K, Williams M. The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord. 2000;38(12):741–747. doi: 10.1038/sj.sc.3101089.
  26. Phillips AA, Krassioukov AV. Contemporary cardiovascular concerns after spinal cord injury: mechanisms, maladaptations, and management. J Neurotrauma. 2015;32(24):1927–1942. doi: 10.1089/neu.2015.3903.
  27. Squair JW, Phillips AA, Currie KD, et al. Autonomic testing for prediction of competition performance in Paralympic athletes. Scand J Med Sci Sports. 2017;28(1):311–318. doi: 10.1111/sms.12900.
  28. Krassioukov AV, Warburton DE, Teasell R, et al. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009;90(4):682–695. doi: 10.1016/j.apmr.2008.10.017.
  29. Krassioukov AV. Which pathways must be spared in the injured human spinal cord to retain cardiovascular control? Prog Brain Res. 2006;152:39–47. doi: 10.1016/s0079-6123(05)52003-x.
  30. Karlsson AV. Autonomic dysreflexia. Spinal Cord. 1999;37(6):383–391. doi: 10.1038/sj.sc.3100867.
  31. Milligan J, Lee J, McMillan C, et al. Autonomic dysreflexia: recognizing a common serious condition in patients with spinal cord injury. Can Fam Physician. 2012;58(8):831−835.
  32. Krassioukov AV, Furlan JC, Fehlings MG. Autonomic dysreflexia in acute spinal cord injury: an under-recognized clinical entity. J Neurotrauma. 2003;20(8):707–716. doi: 10.1089/089771503767869944.
  33. Mayorov DN, Adams MA, Krassioukov AV. Telemetric blood pressure monitoring in conscious rats before and after compression injury of spinal cord. J Neurotrauma. 2001;18(7):727–736. doi: 10.1089/089771501750357663.
  34. Maiorov DN, Weaver LC, Krassioukov AV. Relationship between sympathetic activity and arterial pressure in conscious spinal rats. Am J Physiol. 1997;272(2 Pt 2):H625–631. doi: 10.1152/ajpheart.1997.272.2.h625
  35. Krassioukov AV, Bunge RP, Pucket WR, Bygrave MA. The changes in human spinal sympathetic preganglionic neurons after spinal cord injury. Spinal Cord. 1999;37(1):6–13. doi: 10.1038/sj.sc.3100718.
  36. Krassioukov AV, Weaver LC. Reflex and morphological changes in spinal preganglionic neurons after cord injury in rats. Clin Exp Hyperten. 1995;17(1−2):361–373. doi: 10.3109/10641969509087077.
  37. Krenz NR, Meakin SO, Krassioukov AV, Weaver LC. Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury. J Neurosci. 1999;19(17):7405–7414. doi: 10.1523/jneurosci.19-17-07405.1999.
  38. Krassioukov AV, Johns DG, Schramm LP. Sensitivity of sympathetically correlated spinal interneurons, renal sympathetic nerve activity, and arterial pressure to somatic and visceral stimuli after chronic spinal injury. J Neurotrauma. 2002;19(12):1521–1529. doi: 10.1089/089771502762300193.
  39. Ramer LM, van Stolk AP, Inskip JA, et al. Plasticity of TRPV1-expressing sensory neurons mediating autonomic dysreflexia following spinal cord injury. Front Physiol. 2012;3:257. doi: 10.3389/fphys.2012.00257.
  40. Arnold JM, Feng QP, Delaney GA, Teasell RW. Autonomic dysreflexia in tetraplegic patients: evidence for α-adrenoceptor hyper-responsiveness. Clin Auton Res. 1995;5(5):267–270. doi: 10.1007/bf01818891.
  41. Phillips AA, Matin N, Frias B, et al. Rigid and remodelled: cerebrovascular structure and function after experimental high-thoracic spinal cord transection. J Physiol. 2016;594(6):1677–1688. doi: 10.1113/jp270925.
  42. Phillips AA, Cote AT, Bredin SS, et al. Aortic stiffness increased in spinal cord injury when matched for physical activity. Med Sci Sports Exerc. 2012;44(11):2065–2070. doi: 10.1249/mss.0b013e3182632585.
  43. Legg D, Mason DS. Autonomic dysreflexia in wheelchair sport: a new game in the legal arena? Marq Sports L. 1998;8(2):225−237.
  44. Wan D, Krassioukov AV. Life-threatening outcomes associated with autonomic dysreflexia: a clinical review. J Spinal Cord Med. 2013;37(1):2–10. doi: 10.1179/2045772313y.0000000098.
  45. Yamamoto K, Miyachi M, Saitoh T, et al. Effects of endurance training on resting and post-exercise cardiac autonomic control. Med Sci Sports Exerc. 2001;33(9):1496–1502. doi: 10.1097/00005768-200109000-00012.
  46. Otsuka Y, Shima N, Moritani T, et al. Orthostatic influence on heart rate and blood pressure variability in trained persons with tetraplegia. Eur J Appl Physiol. 2008;104(1):75–78. doi: 10.1007/s00421-008-0783-x.
  47. Wecht JM, Marsico R, Weir JP, et al. Autonomic recovery from peak arm exercise in fit and unfit individuals with paraplegia. Med Sci Sports Exerc. 2006;38(7):1223–1228. doi: 10.1249/01.mss.0000227306.34149.ba.
  48. Krassioukov AV. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol. 2009;169(2):157–164. doi: 10.1016/j.resp.2009.08.003.
  49. Currie KD, West CR, Krassioukov AV. Differences in left ventricular global function and mechanics in paralympic athletes with cervical and thoracic spinal cord injuries. Front Physiol. 2016;7:110. doi: 10.3389/fphys.2016.00110.
  50. Krediet CT, Wilde AA, Wieling W, Halliwill JR. Exercise related syncope, when it′s not the heart. Clin Auton Res. 2004;14 Suppl 1:25–36. doi: 10.1007/s10286-004-1005-1.
  51. Dela F, Mohr T, Jensen CM, et al. Cardiovascular control during exercise: insights from spinal cord-injured humans. Circulation. 2003;107(16):2127–2133. doi: 10.1161/01.cir.0000065225.18093.e4.
  52. Calbet JA, Holmberg HC, Rosdahl H, et al. Why do arms extract less oxygen than legs during exercise? Am J Physiol Regul Integr Comp Physiol. 2005;289(5):R1448–1458. doi: 10.1152/ajpregu.00824.2004.
  53. Machač S, Radvanský J, Kolář P, Kříž J. Cardiovascular response to peak voluntary exercise in males with cervical spinal cord injury. J Spinal Cord Med. 2015;39(4):412–420. doi: 10.1080/10790268.2015.1126939.
  54. Moreno MA, Zamunér AR, Paris JV, et al. Effects of wheelchair sports on respiratory muscle strength and thoracic mobility of individuals with spinal cord injury. Am J Phys Med Rehabil. 2012;91(6):470–477. doi: 10.1097/phm.0b013e3182adcb0.
  55. Bhambhani Y. Physiology of wheelchair racing in athletes with spinal cord injury. Sports Med. 2002;32(1):23–51. doi: 10.2165/00007256-200232010-00002.
  56. Mills PB, Krassioukov AV. Autonomic function as a missing piece of the classification of Paralympic athletes with spinal cord injury. Spinal Cord. 2011;49(7):768–776. doi: 10.1038/sc.2011.2.
  57. Mazzeo F, Santamaria S, Iavarone A. «Boosting» in Paralympic athletes with spinal cord injury: doping without drugs. Funct Neurol. 2015;30(2):91−98. doi: 10.11138/fneur/2015.30.2.091.
  58. Bhambhani Y, Mactavish J, Warren S, et al. Boosting in athletes with high-level spinal cord injury: knowledge, incidence and attitudes of athletes in Paralympic sport. Disabil Rehabil. 2010;32(26):2172–2190. doi: 10.3109/09638288.2010.505678.
  59. Blackmer J. Rehabilitation medicine: 1. Autonomic dysreflexia. CMAJ. 2003;169(9):931−935.
  60. Webborn AD. «Boosting» performance in disability sport. Br J Sports Med. 1999;33(2):74−75.
  61. Bhambhani Y, Forbes S, Forbes J, et al. Physiologic responses of competitive Canadian cross-country skiers with disabilities. Clin J Sport Med. 2012;22(1):31−38. doi: 10.1097/jsm.0b013e3182432f0c.
  62. International Paralympic Committee. Position statement on autonomic dysreflexia and boosting. In: IPC Handbook [Internet]. Bonn, Germany: International Paralympic Committee; 2006 [cited 2018 May 14]. Available from: https://www.paralympic.org/sites/default/files/document/180726114334276_IPC+Handbook_Chapter+4_2_Position+Statement+on+Autonomic+Dysreflexia+and+Boosting.pdf.
  63. Blauwet CA, Benjamin-Laing H, Stomphorst J, et al. Testing for boosting at the Paralympic games: policies, results and future directions. Br J Sports Med. 2013;47(13):832–837. doi: 10.1136/bjsports-2012-092103.
  64. Lippi G, Longo UG, Maffulli N. Genetics and sports. Br Med Bull. 2009;93(1):27–47. doi: 10.1093/bmb/ldp007.
  65. Krassioukov AV. Autonomic dysreflexia: current evidence related to unstable arterial blood pressure control among athletes with spinal cord injury. Clin J Sport Med. 2012;22(1):39−45. doi: 10.1097/JSM.0b013e3182420699.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies