ПЕРСПЕКТИВЫ МОЛЕКУЛЯРНОЙ ДИАГНОСТИКИ ДИСПЛАЗИИ ТАЗОБЕДРЕННЫХ СУСТАВОВ У ДЕТЕЙ

Обложка


Цитировать

Полный текст

Аннотация

Дисплазия тазобедренных суставов является наиболее частой формой патологии в детской ортопедии, требующей поиска новых методов диагностики в связи со сложностью раннего распознавания начальных диспластических изменений. Ограниченность использования диагностических инструментальных методов у детей раннего возраста, отсутствие единых стандартов лечебной тактики в пределах схожей клиники приводит к увеличению затрат на лечение пациента и продолжительности реабилитации. Несмотря на большое внимание специалистов к проблеме дисплазии тазобедренных суставов в детском возрасте, до настоящего времени не разработаны методы ее ранней диагностики, профилактики развития тяжелых форм и осложнений. В данном обзоре освещены молекулярные механизмы формирования патологии. Рассмотрены возможности инструментальных и молекулярных методов ее диагностики. Уделено внимание потенциальным биомаркерам и цитокинам, которые могут быть использованы для диагностики и прогнозирования течения заболевания.

Об авторах

Анастасия Владимировна Сертакова

Саратовский государственный медицинский университет им. В.И. Разумовского

Email: anastasiya-sertakova@yandex.ru
ORCID iD: 0000-0002-4375-0405

Кандидат медицинских наук, врач травматолог-ортопед отдела организационно-методической и научно-образовательной деятельности НИИТОН.

410002, Саратов, ул. Чернышевского д. 148, тел.: +7 (452) 39-31-99.

SPIN-код: 8243-8811

Россия

Ольга Леонидовна Морозова

Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: morozova_ol@list.ru

Доктор медицинских наук, профессор кафедры патофизиологии.

119435, Москва, ул. Большая Пироговская, д. 2, стр. 4.

SPIN-код: 1567-4113

Россия

Сергей Анатольевич Рубашкин

Саратовский государственный медицинский университет им. В.И. Разумовского

Email: docs@mail.ru

Кандидат медицинских наук, врач травматолог-ортопед отделения детской ортопедии НИИТОН.

410002, Саратов, ул. Чернышевского д. 148, тел.: +7 (452) 39-30-71.

SPIN-код: 8243-8811

Россия

Муса Хамзатович Тимаев

Саратовский государственный медицинский университет им. В.И. Разумовского

Email: mustim@mail.ru

Врач травматолог-ортопед отделения детской ортопедии НИИТОН.

410002, Саратов, ул. Чернышевского д. 148, тел.: +7 (452) 39-30-71.

SPIN-код: 7796-3876

Россия

Игорь Алексеевич Норкин

Саратовский государственный медицинский университет им. В.И. Разумовского

Автор, ответственный за переписку.
Email: norkin@sarniito.com

Доктор медицинских наук, профессор, директор НИИТОН.

410002, Саратов, ул. Чернышевского д. 148, тел.: +7 (452) 39-31-91.

SPIN-код: 9253-7993

Россия

Список литературы

  1. Kotlarsky P, Haber R, Bialik V, Eidelman M. Developmental dysplasia of the hip: What has changed in the last 20 years? World J Orthop. 2015;6(11):886–901. doi: 10.5312/wjo.v6.i11.886.
  2. Musielak B, Idzior M, Jozwiak M. Evolution of the term and definition of dysplasia of the hip ― a review of the literature. Arch Med Sci. 2015;11(5):1052–1057. doi: 10.5114/aoms.2015.52734.
  3. Ortiz-Neira CL, Paolucci EO, Donnon T. A meta-analysis of common risk factors associated with the diagnosis of developmental dysplasia of the hip in newborns. Eur J Radiol. 2012;81(3):e344–351. doi: 10.1016/j.ejrad.2011.11.003.
  4. Engesaeter IØ, Laborie LB, Lehmann TG, et al. Prevalence of radiographic findings associated with hip dysplasia in a population-based cohort of 2081 19-year-old Norwegians. Bone Joint J. 2013;95B(2):279–285. doi: 10.1302/0301-620X.95B2.30744.
  5. Mitchell PD, Redfern RC. The prevalence of dislocation in developmental dysplasia of the hip in Britain over the past thousand years. J Pediatr Orthop. 2007;27(8):890–892. doi: 10.1097/bpo.0b013e31815a6091.
  6. Schwend RM, Shaw BA, Segal LS. Evaluation and treatment of developmental hip dysplasia in the newborn and infant. Pediatr Clin North Am. 2014;61(6):1095–1107. doi: 10.1016/j.pcl.2014.08.008.
  7. Грицань И.И. Организационная технология семейно-ориентированной реабилитации детей с врожденными заболеваниями опорно-двигательного аппарата: Автореф. дис. … канд. мед. наук. ― Челябинск; 2015. ― 209 c. [Gritsan’ II. Organizatsionnaya tekhnologiya semeino-orientirovannoi reabilitatsii detei s vrozhdennymi zabolevaniyami oporno-dvigatel’nogo apparata. [dissertation] Chelyabinsk; 2015. 209 p. (In Russ).]
  8. Загородний Н.В. Эндопротезирование крупных суставов в Российской Федерации: Автореф. дис. … канд. мед. наук. ― М.; 1998. ― 32 с. [Zagorodnii NV. Endoprotezirovanie krupnykh sustavov v Rossiiskoi Federatsii. [dissertation abstract] Moscow; 1998. 32 p. (In Russ).] Доступно по: http://vredenreadings.org/arc/28/Zagorodny.pdf. Ссылка активна на 03.02.2017.
  9. Rhodes AM, Clarke NM. A review of environmental factors implicated in human developmental dysplasia of the hip. J Child Orthop. 2014;8(5):375–379. doi: 10.1007/s11832-014-0615-y.
  10. Soran N, Altindag O, Aksoy N, et al. The association of serum prolidase activity with developmental dysplasia of the hip. Rheumatol Int. 2013;33(8):1939–1942. doi: 10.1007/s00296-013-2672-9.
  11. Loder RT, Shafer C. Seasonal variation in children with developmental dysplasia of the hip. J Child Orthop. 2014;8(1):11–22. doi: 10.1007/s11832-014-0558-3.
  12. Омельяненко Н.П., Слуцкий Л.И. Соединительная ткань (гистофизиология и биохимия). ― М.: Известия; 2009. ― Т.1. ― 380 с. [Omel’yanenko NP, Slutskii LI. Soedinitel’naya tkan’ (gistofiziologiya i biokhimiya). Vol. I. Moscow: Izvestiya; 2009. 380 p. (In Russ).]
  13. Павлова В.Н., Павлов Г.Г., Шостак Н.А., Слуцкий Л.И. Сустав: морфология, клиника, диагностика, лечение. ― М.: МИА; 2011. ― 552 с. [Pavlova VN, Pavlov GG, Shostak NA, Slutskii LI. Sustav: morfologiya, klinika, diagnostika, lechenie. Moscow: MIA; 2011. 552 p. (In Russ).]
  14. Zhang X, Meng Q, Ma R, et al. Early acetabular cartilage degeneration in a rabbit model of developmental dysplasia of the hip. Int J Clin Exp Med. 2015;8(8):14505–14512.
  15. Ning B, Sun J, Yuan Y, et al. Early articular cartilage degeneration in a developmental dislocation of the hip model results from activation of beta-catenin. Int J Clin Exp Pathol. 2014;7(4):1369–1378.
  16. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res. 2001;3(2):107–113. doi: 10.1186/ar148.
  17. Lеngsjö TK. Collagen network of the articular cartilage: dissertations in health sciences. Number 157. Kuopio: University of Eastern Finland, Faculty of Health Sciences; 2013. 64 p.
  18. Rouault K, Scotet V, Autret S, et al. Do HOXB9 and COL1A1 genes play a role in congenital dislocation of the hip? Study in a Caucasian population. Osteoarthritis Cartilage. 2009;17(8):1099–1105. doi: 10.1016/j.joca.2008.12.012.
  19. Umlauf D, Frank S, Pap T, Bertrand J. Cartilage biology, pathology, and repair. Cell Mol Life Sci. 2010;67(24):4197–4211. doi: 10.1007/s00018-010-0498-0.
  20. Болевич С.Б., Войнов В.А. Молекулярные механизмы в патологии человека. Руководство для врачей. ― М.: МИА; 2012. ― 206 с. [Bolevich SB, Voinov VA. Molekulyarnye mekhanizmy v patologii cheloveka. Rukovodstvo dlya vrachei. Moscow: MIA; 2012. 206 p. (In Russ).]
  21. Tamura S, Nishii T, Shiomi T, et al. Three-dimensional patterns of early acetabular cartilage damage in hip dysplasia; a high-resolutional CT arthrography study. Osteoarthritis Cartilage. 2012;20(7):646–652. doi: 10.1016/j.joca.2012.03.015.
  22. Teichtahl AJ, Wang Y, Smith S, et al. Structural changes of hip osteoarthritis using magnetic resonance imaging. Arthritis Res Ther. 2014;16(5):466. doi: 10.1186/s13075-014-0466-4.
  23. Henrotin Y, Pesesse L, Sanchez C. Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int. 2012;23 Suppl 8:S847–S851. doi: 10.1007/s00198-012-2162-z.
  24. Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15(6):223. doi: 10.1186/ar4405.
  25. Gulati V, Eseonu K, Sayani J, et al. Developmental dysplasia of the hip in the newborn: A systematic review. World J Orthop. 2013;4(2):32–41. doi: 10.5312/wjo.v4.i2.32.
  26. Clohisy JC, Dobson MA, Robison JF, et al. Radiographic structural abnormalities associated with premature, natural hip-joint failure. J Bone Joint Surg Am. 2011;93 Suppl 2:3–9. doi: 10.2106/Jbjs.J.01734.
  27. Крестьяшин В.М., Лозовая Ю.И., Гуревич А.И., и др. Современный взгляд на отдаленные результаты лечения дисплазии тазобедренного сустава // Детская хирургия. ― 2011. ― №2. ― С. 44–48. [Krest’yashin VM, Lozovaya YuI, Gurevich AI, et al. The modern view of the long-term outcome of the treatment of hip dysplasia. Pediatric surgery. 2011;(2):44–48. (In Russ).]
  28. Lotz M, Martel-Pelletier J, Christiansen C, et al. Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis. 2013;72(11):1756–1763. doi: 10.1136/annrheumdis-2013-203726.
  29. Blanco FJ. Osteoarthritis year in review 2014: we need more biochemical biomarkers in qualification phase. Osteoarthritis Cartilage. 2014;22(12):2025–2032. doi: 10.1016/j.joca.2014.09.009.
  30. Hlaing TT, Compston JE. Biochemical markers of bone turnover uses and limitations. Ann Clin Biochem. 2014;51(2):189–202. doi: 10.1177/0004563213515190.
  31. Garcia-Ramirez M, Toran N, Andaluz P, et al. Vascular endothelial growth factor is expressed in human fetal growth cartilage. J Bone Miner Res. 2000;15(3):534–540. doi: 10.1359/jbmr.2000.15.3.534.
  32. Vincent TL. Fibroblast growth factor 2: good or bad guy in the joint? Arthritis Res Ther. 2011;13(5):127. doi: 10.1186/ar3447.
  33. Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016;126(2):509–526. doi: 10.1172/Jci82585.
  34. Sowa G, Westrick E, Rajasekhar AG, et al. Identification of candidate serum biomarkers for intervertebral disk degeneration in an animal model. Pm&R. 2009;1(6):536–540. doi: 10.1016/j.pmrj.2009.03.016.
  35. Jayabalan P, Sowa GA. The development of biomarkers for degenerative musculoskeletal conditions. Discov Med. 2014;17(92):59–66.
  36. Eapen E, Grey V, Don-Wauchope A, Atkinson SA. Bone health in childhood: usefulness of biochemical biomarkers. EJIFCC. 2008;19(2):123–136.
  37. Dreier R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther. 2010;12(5):216. doi: 10.1186/ar3117.
  38. Yun YR, Won JE, Jeon E, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010;2010:218142. doi: 10.4061/2010/218142.
  39. Ludin A, Sela JJ, Schroeder A, et al. Injection of vascular endothelial growth factor into knee joints induces osteoarthritis in mice. Osteoarthritis Cartilage. 2013;21(3):491–497. doi: 10.1016/j.joca.2012.12.003.
  40. Tsuchida AI, Beekhuizen M, ‘t Hart MC, et al. Cytokine profiles in the joint depend on pathology, but are different between synovial fluid, cartilage tissue and cultured chondrocytes. Arthritis Res Ther. 2014;16(5):441. doi: 10.1186/s13075-014-0441-0.
  41. Yamairi F, Utsumi H, Ono Y, et al. Expression of vascular endothelial growth factor (VEGF) associated with histopathological changes in rodent models of osteoarthritis. J Toxicol Pathol. 2011;24(2):137–142. doi: 10.1293/tox.24.137.
  42. Jansen H, Meffert RH, Birkenfeld F, et al. Detection of vascular endothelial growth factor (VEGF) in moderate osteoarthritis in a rabbit model. Ann Anat. 2012;194(5):452–456. doi: 10.1016/j.aanat.2012.01.006.
  43. Beamer B, Hettrich C, Lane J. Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J. 2010;6(1):85–94. doi: 10.1007/s11420-009-9129-4.
  44. Chen XY, Hao YR, Wang Z, et al. The effect of vascular endothelial growth factor on aggrecan and type II collagen expression in rat articular chondrocytes. Rheumatol Int. 2012;32(11):3359–3364. doi: 10.1007/s00296-011-2178-2.
  45. Mabey T, Honsawek S. Cytokines as biochemical markers for knee osteoarthritis. World J Orthop. 2015;6(1):95–105. doi: 10.5312/wjo.v6.i1.95.
  46. Attur M, Krasnokutsky-Samuels S, Samuels J, Abramson SB. Prognostic biomarkers in osteoarthritis. Curr Opin Rheumatol. 2013;25(1):136–144. doi: 10.1097/BOR.0b013e32835a9381.
  47. Huang Y, Eapen E, Steele S, Grey V. Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem. 2011;44(10–11):771–778. doi: 10.1016/j.clinbiochem.2011.04.008.
  48. Kraus VB, Burnett B, Coindreau J, et al. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthritis Cartilage. 2011;19(5):515–542. doi: 10.1016/j.joca.2010.08.019.
  49. Wang Y, Li D, Xu N, et al. Follistatin-like protein 1: a serum biochemical marker reflecting the severity of joint damage in patients with osteoarthritis. Arthritis Res Ther. 2011;13(6):R193. doi: 10.1186/ar3522.
  50. Mobasheri A. Osteoarthritis year 2012 in review: biomarkers. Osteoarthritis Cartilage. 2012;20(12):1451–1464. doi: 10.1016/j.joca.2012.07.009.
  51. Rousseau JCh, Garnero P. Biological markers in osteoarthritis. Bone. 2012;51(2):265–277. doi: 10.1016/j.bone.2012.04.001.
  52. van Spil WE, Jansen NW, Bijlsma JW, et al. Clusters within a wide spectrum of biochemical markers for osteoarthritis: data from CHECK, a large cohort of individuals with very early symptomatic osteoarthritis. Osteoarthritis Cartilage. 2012;20(7):745–754. doi: 10.1016/j.joca.2012.04.004.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2017



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах