Роль активных форм кислорода в патогенезе дисфункции адипоцитов при метаболическом синдроме: перспективы фармакологической коррекции

Обложка


Цитировать

Полный текст

Аннотация

Установлено, что окислительный стресс вызывает инсулинорезистентность адипоцитов, способствует увеличению секреции адипоцитами лептина, ИЛ-6, ФНО-α. Под действием активных форм кислорода снижается секреция адипоцитами адипонектина. Метаболический синдром способствует окислительному стрессу в жировой ткани с одной стороны – за счет активации продукции активных форм кислорода НАДФН-оксидазой, а с другой – в результате снижения антиоксидантной защиты адипоцитов. Установлено, что ожирение само по себе может вызывать окислительный стресс. В патогенезе окислительного стресса адипоцитов важную роль играет хронический стресс, глюкокортикоиды, минералокортикоиды, ангиотензин-II, ФНО-α. Средством выбора при лечении инсулинорезистентности остаётся метформин. Получены положительные результаты при лечении метаболического синдрома лозартаном. Антиоксиданты и флавоноиды оказывают положительное влияние на течение экспериментального метаболического синдрома.

Об авторах

Екатерина Сергеевна Прокудина

Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук

Email: goddess27@mail.ru
ORCID iD: 0000-0002-1991-6516

Младший научный сотрудник лаборатории экспериментальной кардиологии.

Адрес: 634012, Томск, ул. Киевская, д. 111

SPIN-код: 3819-7464

Россия

Леонид Николаевич Маслов

Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук

Автор, ответственный за переписку.
Email: maslov@cardio-tomsk.ru
ORCID iD: 0000-0002-6020-1598

Доктор медицинских наук, профессор, руководитель лаборатории экспериментальной кардиологии. 

Адрес: 634012, Томск, ул. Киевская, д. 111

SPIN-код5843-2490


Владимир Владимирович Иванов

Сибирский государственный медицинский университет

Email: ivanovvv1953@gmail.com
ORCID iD: 0000-0001-9348-4945

Кандидат биологических наук, руководитель лаборатории биомоделей.

Адрес: 634050, Томск, Московский тракт, д. 2

SPIN-код: 4961-9959

Инна Давидовна Беспалова

Сибирский государственный медицинский университет

Email: innadave@mail2000.ru
ORCID iD: 0000-0002-1053-4781

Кандидат медицинских наук, заведующая кафедрой социальной работы, социальной и клинической психологии.

Адрес: 634050, Томск, Московский тракт, д. 2.

SPIN-код6852-6200

Дмитрий Сергеевич Письменный

Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук

Email: Cross_117@mail.ru
ORCID iD: 0000-0002-4751-8953

Лаборант-исследователь лаборатории экспериментальной кардиологии.

Адрес: 634012, Томск, ул. Киевская, д. 111.

SPIN-код: 7441-0790

Никита Сергеевич Воронков

Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук

Email: maslov@cardio-tomsk.ru
ORCID iD: 0000-0002-9447-4236

Лаборант-исследователь лаборатории экспериментальной кардиологии.

Адрес: 634012, Томск, ул. Киевская, д. 111. 

SPIN-код: 7862-7013

Список литературы

  1. who.int [Internet]. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Geneva: World Health Organization; 1999. 59 p. [cited 2017 Jan 21]. Available from: http://apps.who.int/iris/handle/10665/66040.
  2. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683−689. doi: 10.2337/diacare.24.4.683.
  3. Aguilar M, Bhuket T, Torres S, et al. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA. 2015;313(19):1973−1974. doi: 10.1001/jama.2015.4260.
  4. Block A, Schipf S, Van der Auwera S, et al. Sex- and age-specific associations between major depressive disorder and metabolic syndrome in two general population samples in Germany. Nord J Psychiatry. 2016;70(8):611−620. doi: 10.1080/08039488.2016.1191535.
  5. de Carvalho Vidigal F, Bressan J, Babio N, Salas-Salvadó J. Prevalence of metabolic syndrome in Brazilian adults: a systematic review. BMC Public Health. 2013;13:1198. doi: 10.1186/1471-2458-13-1198.
  6. Deepa M, Farooq S, Datta M, et al. Prevalence of metabolic syndrome using WHO, ATPIII and IDF definitions in Asian Indians: the Chennai Urban Rural Epidemiology Study (CURES-34). Diabetes Metab Res Rev. 2007;23 (2):127−134. doi: 10.1002/dmrr.658.
  7. Metelskaya VA, Shkolnikova MA, Shalnova SA, et al. Prevalence, components, and correlates of metabolic syndrome (MetS) among elderly Muscovites. Arch Gerontol Geriatr. 2012;55(2):231−237. doi: 10.1016/j.archger.2011.09.005.
  8. Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595−1607. doi: 10.2337/diab.37.12.1595.
  9. Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-δ activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab. 2003;285(2):E295−E302. doi: 10.1152/ajpendo.00044.2003.
  10. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752−1761. doi: 10.1172/JCI21625.
  11. Kurata A, Nishizawa H, Kihara S, et al. Blockade of Angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation. Kidney Int. 2006;70(10):1717−1724. doi: 10.1038/sj.ki.5001810.
  12. Hirata A, Maeda N, Hiuge A, et al. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc Res. 2009;84(1):164−172. doi: 10.1093/cvr/cvp191.
  13. Marcus Y, Shefer G, Sasson K, et al. Angiotensin 1−7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model. Diabetes. 2013;62(4):1121−1130. doi: 10.2337/db12-0792.
  14. Farina JP, García ME, Alzamendi A, et al. Antioxidant treatment prevents the development of fructose-induced abdominal adipose tissue dysfunction. Clin Sci (Lond). 2013;125(2):87−97. doi: 10.1042/CS20120470.
  15. Wang CH, Wang CC, Huang HC, Wei YH. Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J. 2013;280(4):1039−1050. doi: 10.1111/febs.12096.
  16. Guerra RC, Zuñiga-Muñoz A, Guarner Lans V, et al. Modulation of the activities of catalase, Cu-Zn, Mn superoxide dismutase, and glutathione peroxidase in adipocyte from ovariectomised female rats with metabolic syndrome. Int J Endocrinol. 2014;2014:175080. doi: 10.1155/2014/175080.
  17. Okuno Y, Matsuda M, Kobayashi H, et al. Adipose expression of catalase is regulated via a novel remote PPARγ-responsive region. Biochem Biophys Res Commun. 2008;366(3):698−704. doi: 10.1016/j.bbrc.2007.12.001.
  18. Kobayashi H, Matsuda M, Fukuhara A, et al. Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. Am J Physiol Endocrinol Metab. 2009;296(6):E1326−E1334. doi: 10.1152/ajpendo.90921.2008.
  19. Hatami M, Saidijam M, Yadegarzari R, et al. Peroxisome proliferator-activated receptor-γgene expression and its association with oxidative stress in patients with metabolic syndrome. Chonnam Med J. 2016;52(3):201−206. doi: 10.4068/cmj.2016.52.3.201.
  20. Беспалова И.Д. Воспалительный процесс в патогенезе метаболического синдрома: дис. ... докт. мед. наук. — Томск; ٢٠١٦. [Bespalova ID. Vospalitel’nyi protsess v patogeneze metabolicheskogo sindroma. [dissertation] Tomsk; 2016. (In Russ).] Доступно по: http://www.ssmu.ru/upload/filesarchive/files/Dissertacija_Bespalova_I_D__na_sai__t_file_1_3223.pdf. Ссылка активна на 23.01.2017.
  21. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome ― a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469−480. doi: 10.1111/j.1464-5491.2006.01858.x.
  22. Model MA, Kukuruga MA, Todd RF. A sensitive flow cytometric method for measuring the oxidative burst. J Immunol Methods. 1997;202(2):105−111. doi: 10.1016/s0022-1759(96)00241-4.
  23. Sun M, Huang X, Yan Y, et al. Rac1 is a possible link between obesity and oxidative stress in Chinese overweight adolescents. Obesity (Silver Spring). 2012;20(11):2233−2240. doi: 10.1038/oby.2012.63.
  24. Karbownik-Lewinska M, Szosland J, Kokoszko-Bilska A, et al. Direct contribution of obesity to oxidative damage to macromolecules. Neuro Endocrinol Lett. 2012;33(4):453−461.
  25. Habib SA, Saad EA, Elsharkawy AA, Attia ZR. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents. Adv Med Sci. 2015;60(2):179−185. doi: 10.1016/j.advms.2015.02.002.
  26. Pandey G, Shihabudeen MS, David HP, et al. Association between hyperleptinemia and oxidative stress in obese diabetic subjects. J Diabetes Metab Disord. 2015;14:24. doi: 10.1186/s40200-015-0159-9.
  27. Becer E, Çırakoğlu A. Association of the Ala16Val MnSOD gene polymorphism with plasma leptin levels and oxidative stress biomarkers in obese patients. Gene. 2015;568(1):35−39. doi: 10.1016/j.gene.2015.05.009.
  28. Беспалова И.Д., Калюжин В.В., Рязанцева Н.В., и др. Влияние гиперлептинемии на качество жизни больных гипертонической болезнью с метаболическим синдромом // Артериальная гипертензия. ― 2013. ― Т.19. ― №5 ― С. 428—434. [Bespalova ID, Kalyuzhin VV, Ryazantseva NV, et al. The effect of the hyperleptinemia on the quality of life of hypertensive patients with metabolic syndrome. Arterialnaya gipertenziya. 2013;19(5):428−434. (In Russ).]
  29. Kim SH, Chung JH, Song SW, et al. Relationship between deep subcutaneous abdominal adipose tissue and metabolic syndrome: a case control study. Diabetol Metab Syndr. 2016;8:10. doi: 10.1186/s13098-016-0127-7.
  30. Velarde GP, Sherazi S, Kraemer DF, et al. Clinical and biochemical markers of cardiovascular structure and function in women with the metabolic syndrome. Am J Cardiol. 2015;116(11):1705−1710. doi: 10.1016/j.amjcard.2015.09.010.
  31. Lee SW, Jo HH, Kim MR, et al. Association between osteocalcin and metabolic syndrome in postmenopausal women. Arch Gynecol Obstet. 2015;292(3):673−681. doi: 10.1007/s00404-015-3656-7.
  32. Yoon CY, Kim YL, Han SH, et al. Hypoadiponectinemia and the presence of metabolic syndrome in patients with chronic kidney disease: results from the KNOW-CKD study. Diabetol Metab Syndr. 2016;8:75. doi: 10.1186/s13098-016-0191-z.
  33. Mlinar B, Marc J. New insights into adipose tissue dysfunction in insulin resistance. Clin Chem Lab Med. 2011;49(12):1925−1935. doi: 10.1515/CCLM.2011.697.
  34. Murdolo G, Bartolini D, Tortoioli C, et al. Lipokines and oxysterols: novel adipose-derived lipid hormones linking adipose dysfunction and insulin resistance. Free Radic Biol Med. 2013;65:811−820. doi: 10.1016/j.freeradbiomed.2013.08.007.
  35. Nolan JJ, O’Gorman DJ. Pathophysiology of the metabolic syndrome. In: Beck-Nielsen H, editor. The metabolic syndrome: pharmacology and clinical aspects. Wien: Springer-Verlag; 2013. p. 17−42. doi: 10.1007/978-3-7091-1331-8_3.
  36. Gonzalez-Jimenez E, Schmidt-Riovalle J, Sinausía L, et al. Predictive value of ceruloplasmin for metabolic syndrome in adolescents. Biofactors. 2016;42(2):163−170. doi: 10.1002/biof.1258.
  37. Christiana UI, Casimir AE, Nicholas AA, et al. Plasma levels of inflammatory cytokines in adult Nigerians with the metabolic syndrome. Niger Med J. 2016;57(1):64−68. doi: 10.4103/0300-1652.180569.
  38. Soares AF, Guichardant M, Cozzone D, et al. Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes. Free Radic Biol Med. 2005;38(7):882−889. doi: 10.1016/j.freeradbiomed.2004.12.010.
  39. Chen B, Lam KS, Wang Y, et al. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem Biophys Res Commun. 2006;341(2):549−556. doi: 10.1016/j.bbrc.2006.01.004.
  40. Monickaraj F, Aravind S, Nandhini P, et al. Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. J Biosci. 2013;38(1):113−122. doi: 10.1007/s12038-012-9289-0.
  41. Fukushima M, Okamoto Y, Katsumata H, et al. Growth hormone ameliorates adipose dysfunction during oxidative stress and inflammation and improves glucose tolerance in obese mice. Horm Metab Res. 2014;46(9):656−662. doi: 10.1055/s-0034-1381998.
  42. Pan Y, Qiao QY, Pan LH, et al. Losartan reduces insulin resistance by inhibiting oxidative stress and enhancing insulin signaling transduction. Exp Clin Endocrinol Diabetes. 2015;123(3):170−177. doi: 10.1055/s-0034-1395658.
  43. Kowalska K, Olejnik A. Cranberries (Oxycoccus quadripetalus) inhibit pro-inflammatory cytokine and chemokine expression in 3T3-L1 adipocytes. Food Chem. 2016;196:1137−1143. doi: 10.1016/j.foodchem.2015.10.069.
  44. Rudich A, Kozlovsky N, Potashnik R, Bashan N. Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol. 1997;272(5 Pt 1):E935−E940.
  45. Rudich A, Tirosh A, Potashnik R, et al. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. 1998;47(10):1562−1569. doi: 10.2337/diabetes.47.10.1562.
  46. Tirosh A, Potashnik R, Bashan N, Rudich A. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem. 1999;274(15):10595−10602. doi: 10.1074/jbc.274.15.10595.
  47. Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-δ activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab. 2003;285(2):E295−E302. doi: 10.1152/ajpendo.00044.2003.
  48. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944−948. doi: 10.1038/nature04634.
  49. Guo H, Ling W, Wang Q, et al. Cyanidin 3-glucoside protects 3T3-L1 adipocytes against H2O2- or TNF-α-induced insulin resistance by inhibiting c-Jun NH2-terminal kinase activation. Biochem Pharmacol. 2008;75(6):1393−1401. doi: 10.1016/j.bcp.2007.11.016.
  50. Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5):e330−e341. doi: 10.1016/j.orcp.2013.05.004.
  51. Kameji H, Mochizuki K, Miyoshi N, Goda T. β-Carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor-α. Nutrition. 2010;26(11−12):1151−1156. doi: 10.1016/j.nut.2009.09.006.
  52. Yen GC, Chen YC, Chang WT, Hsu CL. Effects of polyphenolic compounds on tumor necrosis factor-α (TNF-α)-induced changes of adipokines and oxidative stress in 3T3-L1 adipocytes. J Agric Food Chem. 2011;59(2):546−551. doi: 10.1021/jf1036992.
  53. Eriksson JW. Metabolic stress in insulin’s target cells leads to ROS accumulation ― a hypothetical common pathway causing insulin resistance. FEBS Lett. 2007;581(19):3734−3742. doi: 10.1016/j.febslet.2007.06.044.
  54. Kazakou P, Kyriazopoulou V, Michalaki M, et al. Activated hypothalamic pituitary adrenal axis in patients with metabolic syndrome. Horm Metab Res. 2012;44(11):839−844. doi: 10.1055/s-0032-1311632.
  55. Nagasawa K, Matsuura N, Takeshita Y, et al. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486. Nutr Diabetes. 2016;6:e207. doi: 10.1038/nutd.2016.14.
  56. Bailey CJ. Treatment with metformin. In: Beck-Nielsen H, editor. The metabolic syndrome: pharmacology and clinical aspects. Wien: Springer-Verlag; 2013. p. 99−116. doi: 10.1007/978-3-7091-1331-8_8.
  57. Carillon J, Knabe L, Montalban A, et al. Curative diet supplementation with a melon superoxide dismutase reduces adipose tissue in obese hamsters by improving insulin sensitivity. Mol Nutr Food Res. 2014;58(4):842−850. doi: 10.1002/mnfr.201300466.
  58. Gao M, Zhao Z, Lv P, et al. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress. Redox Biol. 2015;6:206−217. doi: 10.1016/j.redox.2015.06.013.
  59. Vazquez Prieto MA, Bettaieb A, Rodriguez Lanzi C, et al. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and 3T3-L1adipocytes. Mol Nutr Food Res. 2015;59(4):622−633. doi: 10.1002/mnfr.201400631.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2017



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах