Параоксоназа: универсальный фактор антиоксидантной защиты организма человека

Обложка


Цитировать

Полный текст

Аннотация

Параоксоназы – это семейство ферментов, представленное PON1, PON2 и PON3, которые обладают широкой специфичностью и каталитической универсальностью. PON1 и PON3 циркулируют в плазме в состоянии, связанном с липопротеинами высокой плотности, предотвращают окисление липропротеинов, уменьшают образование липидных пероксидов и снижают риск развития атеросклероза. PON2 является внутриклеточным ферментом и не обнаруживается в плазме.  PON2 обнаружена во многих тканях организма, включая печень, легкие, трахею, почки, сердце, поджелудочную железу, тонкий кишечник, мышцы, семенники и эндотелиальные клетки. PON2 также присутствует в дофаминергических областях головного мозга и в астроцитах. На субклеточном уровне, PON2 локализуется в митохондриях, где предотвращает накопление триглицеридов и развитие окислительного стресса. PON3 - последняя из открытых параоксоназ обладает более выраженной антиксидантной активностью. PON3 обнаружена в клетках кожи, слюнных железах, железистом эпителии желудка, кишечника, эндометрии, гепатоцитах,  клетках поджелудочной железы, сердце, жировой ткани и в легочном эпителии. PON3 недостаточно изучена, но доказано ее антиоксидантное, противовоспалительное и противомикробное действие  за счет блокирования кворум-зависимых систем бактерий. Избыточная экспрессия PON3 уменьшает образование атеросклеротических бляшек и препятствует развитию ожирения, количество PON3 увеличивается при онкологических заболеваниях, повышая сопротивление опухолевых клеток к оксидативному стрессу и апоптозу.
В обзоре представлена информация о физиологической роди параоксоназ, а также их участии в развитии заболеваний, ассоциированных с окислительным стрессом (атеросклероз, эндометриоз, болезнь Паркинсона, цирроз печени, бактериальные и вирусные инфекции и опухолевые процессы).

Об авторах

Екатерина Игоревна Боровкова

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: Katyanikitina@mail.ru
ORCID iD: 0000-0001-7140-262X

Доктор медицинских наук, доцент, профессор кафедры акушерства и гинекологии лечебного факультета. 

SPIN-код8897-8605

Адрес: 117997, Москва, ул. Островитянова, д. 1


Россия

Надежда Викторовна Антипова

Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН;
Российский университет дружбы народов

Автор, ответственный за переписку.
Email: nadine.antipova@gmail.com
ORCID iD: 0000-0002-5799-7767

Кандидат биологических наук, научный сотрудник ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН», доцент кафедры фармацевтической и токсикологической химии РУДН. 

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10

Россия

Татьяна Васильевна Корнеенко

Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН

Email: tvkorn@gmail.com
ORCID iD: 0000-0002-5899-6168

Кандидат биологических наук, научный сотрудник.

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10

Россия

Михаил Иванович Шахпаронов

Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН

Email: shakhparonov@gmail.com
ORCID iD: 0000-0001-5965-8067

Доктор химических наук, ведущий научный сотрудник.

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10

Россия

Иван Максимович Боровков

Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: bigchanc97@gmail.ru
ORCID iD: 0000-0002-2017-8047

Студент лечебного факультета.

SPIN-код4744-1115

Адрес: 119991, Москва, ул. Большая Пироговская, д. 2, стр. 2

Россия

Список литературы

  1. Jaouad LC, de Guise C, Berrougui H, et al. Age-related decrease in high-density lipoproteins antioxidant activity is due to an alteration in the PON1’s free sulfhydyl groups. Atherosclerosis. 2006;185(1):191–200. doi: 10.1016/j.atherosclerosis.2005.06.012
  2. Rodríguez-Sanabria F, Rull A, Beltrán-Debón R, et al. Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role. J Mol Histol. 2010;41(6):379–386. doi: 10.1007/s10735-010-9299-x
  3. Furlong CE. Paraoxonases: an historical perspective. In: Mackness B, Mackness M, Aviram M, Paragh G, editors. The paraoxonases: their role in disease development and xenobiotic metabolism. Dordrecht, The Netherlands: Springer; 2008. p. 3–31.
  4. Teiber JF, Draganov DI, La Du BN, et al. Lactonase and lactonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. Biochem Pharmacol. 2003;66(6):887–896. doi: 10.1016/s0006-2952(03)00401-5.
  5. Rosenblat M, Gaidukov L, Khersonsky O, et al. The catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J Biol Chem. 2006;281(11):7657–7665. doi: 10.1074/jbc.m512595200.
  6. Fuhrman B, Volkova N, Aviram M. Paraoxonase 1 (PON1) is present in postprandial chylomicrons. Atherosclerosis. 2005;180(1):55–61. doi: 10.1016/j.atherosclerosis.2004.12.009.
  7. Rajković Grdić M, Rumora L, Barišić K. The paraoxonase 1,2, and 3 in humans. Biochem Med (Zagreb). 2011;21(2):122–30. doi: 10.11613/bm.2011.020.
  8. Fuhrman B, Gantman A, Aviram M. Paraoxonase 1 (PON1) deficiency in mice is associated with reduced expression of macrophage SR-BI and consequently the loss of HDL cytoprotection against apoptosis. Atherosclerosis. 2010;211(1):61–68. doi: 10.1016/j.atherosclerosis.2010.01.025.
  9. Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. 2008;299(11):1265–1267. doi: 10.1001/jama.299.11.1265
  10. Rosenblat M, Volkova N, Ward J, et al. Paraoxonase 1 (PON1) inhibits monocyte-to-macrophage differentiation. Atherosclerosis. 2011;219(1):49–56. doi: 10.1016/j.atherosclerosis.2011.06.054.
  11. Coombes RH, Crow JA, Dail MB, et al. Relationship of human paraoxonase-1 serum activity and genotype with atherosclerosis in individuals from the Deep South. Pharmacogenet Genomics. 2011;21(12):867–875. doi: 10.1097/fpc.0b013e32834cebc6.
  12. Costa LG, Vitalone A, Cole TB, Furlong CE. Modulation of paraoxonase (PON1) activity. Biochem Pharmacol. 2005;69(4):541–550. doi: 10.1016/j.bcp.2004.08.027.
  13. Marchegiani F, Marra M, Olivieri F, et al. Paraoxonase 1: genetics and activities during aging. Rejuvenation Res. 2008;11(1):113–127. doi: 10.1089/rej.2007.0582.
  14. Reddy ST, Wadleigh DJ, Grijalva V, et al. Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol. 2001;21(4):542–547. doi: 10.1161/01.atv.21.4.542.
  15. Giordano G, Cole TB, Furlong CE, Costa LG. Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role? Toxicol Appl Pharmacol. 2011;256(3):369–378. doi: 10.1016/j.taap.2011.02.014.
  16. Rosenblat M, Coleman R, Reddy ST, et al. Paraoxonase 2 attenuates macrophage triglyceride accumulation via inhibition of diacylglycerol acyltransferase 1. J Lipid Res. 2009;50(5):870–879. doi: 10.1194/jlr.m800550-jlr200.
  17. Meilin E, Aviram M, Hayek T. Paraoxonase 2 (PON2) decreases high glucose-induced macrophage triglycerides (TG) accumulation, via inhibition of NADPH-oxidase and DGAT1 activity: studies in PON2-deficient mice. Atherosclerosis. 2010;208(2):390–395. doi: 10.1016/j.atherosclerosis.2009.07.057.
  18. Marsillach J, Mackness B, Mackness M, et al. Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med. 2008;45(2):146–157. doi: 10.1016/j.freeradbiomed.2008.03.023.
  19. Precourt LP, Seidman E, Delvin E, et al. Comparative expression analysis reveals differences in the regulation of intestinal paraoxonase family members. Int J Biochem Cell Biol. 2009;41(7):1628–1637. doi: 10.1016/j.biocel.2009.02.013.
  20. Levy E, Trudel K, Bendayan M, et al. Biological role, protein expression, subcellular localization, and oxidative stress response of paraoxonase 2 in the intestine of humans and rats. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1252–1261. doi: 10.1152/ajpgi.00369.2007.
  21. Godeiro C Jr, Aguiar PM, Felicio AC, et al. PINK1 polymorphism IVS1-7 A→ G, exposure to environmental risk factors and anticipation of disease onset in Brazilian patients with early-onset Parkinson’s Disease. Neurosci Lett. 2010;469(1):155–158. doi: 10.1016/j.neulet.2009.11.064.
  22. Sanyal J, Chakraborty DP, Sarkar B, et al. Environmental and familial risk factors of Parkinsons disease: case-control study. Can J Neurol Sci. 2010;37(5):637–642. doi: 10.1017/s0317167100010829.
  23. Altenhofer S, Witte I, Teiber JF, et al. One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity. J Biol Chem. 2010;285(32):24398–24403. doi: 10.1074/jbc.m110.118604.
  24. Horke S, Witte I, Wilgenbus P, et al. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation. 2007;115(15):2055–2064. doi: 10.1161/circulationaha.106.681700.
  25. Horke S, Witte I, Altenhöfer S, et al. Paraoxonase 2 is down-regulated by the Pseudomonas aeruginosa quorumsensing signal N-(3-oxododecanoyl)-L-homoserine lactone and attenuates oxidative stress induced by pyocyanin. Biochem J. 2010;426(1):73–83. doi: 10.1042/bj20091414.
  26. Devarajan A, Bourquard N, Hama S, et al. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. Antioxid Redox Signal. 2011;14(3):341–351. doi: 10.1089/ars.2010.3430.
  27. Higgins GC, Beart PM, Shin YS, et al. Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimers Dis. 2010;20 Suppl 2:S453–473. doi: 10.3233/JAD-2010-100321.
  28. Burton G, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig. 2004;11(6):342–352. doi: 10.1016/j.jsgi.2004.03.003.
  29. Bourquard N, Ng CJ, Reddy ST. Impaired hepatic insulin signalling in PON2-deficient mice: a novel role for the PON2/apoE axis on the macrophage inflammatory response. Biochem J. 2011;436(1):91–100. doi: 10.1042/bj20101891.
  30. Schweikert EM, Amort J, Wilgenbus P, et al. Paraoxonases-2 and -3 are important defense enzymes against pseudomonas aeruginosa virulence factors due to their anti-oxidative and anti-inflammatory properties. J Lipids. 2012;2012:1–9. doi: 10.1155/2012/352857.
  31. Costa LG, de Laat R, Dao K, et al. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection. Neurotoxicology. 2014;43:3-9. doi: 10.1016/j.neuro.2013.08.011.
  32. Ng CJ, Bourquard N, Hama SY, et al. Adenovirus-mediated expression of human paraoxonase 3 protects against the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2007;27(6):1368–1374. doi: 10.1161/ATVBAHA.106.134189.
  33. Marsillach J, Mackness B, Mackness M, et al. Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med. 2008;45(2):146-157. doi: 10.1016/j.freeradbiomed.2008.03.023.
  34. Camps J, Pujol I, Ballester F, et al. Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in Gram-negative bacteria. Antimicrob Agents Chemother. 2011;55(4):1325–1331. doi: 10.1128/AAC.01502-10.
  35. Butorac D, Celap I, Kačkov S, et al. Paraoxonase 1 activity and phenotype distribution in premenopausal and postmenopausal women. Biochem Med (Zagreb). 2014;24(2):273–280. doi: 10.11613/bm.2014.030.
  36. Andrade AZ, Rodrigues JK, Dib LA, et al. [Serum markers of oxidative stress in infertile women with endometriosis. (In Portuguese).] Rev Bras Ginecol Obstet. 2010;32(6):279–285. doi: 10.1590/s0100-72032010000600005.
  37. Augoulea A, Mastorakos G, Lambrinoudaki I, et al. The role of the oxidative-stress in the endometriosis-related infertility. Gynecol Endocrinol. 2009;25(2):75–81. doi: 10.1080/09513590802485012.
  38. Bragatto FB, Barbosa CP, Christofolini DM, et al. There is no relationship between Paraoxonase serum level activity in women with endometriosis and the stage of the disease: an observational study. Reprod Health. 2013;10:32. doi: 10.1186/1742-4755-10-32.
  39. Draganov DI, Teiber JF, Speelman A, et al. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005;46(6):1239–1247. doi: 10.1194/jlr.M400511-JLR200.
  40. Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost. 2011;106(5):858–867. doi: 10.1160/TH11-06-0392.
  41. Han CY, Chiba T, Campbell JS, et al. Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol. 2006;26(8):1806–1813. doi: 10.1161/01.ATV.0000227472.70734.ad.
  42. Draganov D, Teiber J, Watson C, et al. PON1 and oxidative stress in human sepsis and an animal model of sepsis. Adv Exp Med Biol. 2010;660:89–97. doi: 10.1007/978-1-60761-350-3_9.
  43. Novak F, Vavrova L, Kodydkova J, et al. Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med. 2010;10(1):21–25. doi: 10.1007/s10238-009-0059-8.
  44. Campbell LA, Yaraei K, Van Lenten B, et al. The acute phase reactant response to respiratory infection with Chlamydia pneumoniae: implications for the pathogenesis of atherosclerosis. Microbes Infect. 2010;12(8–9):598–606. doi: 10.1016/j.micinf.2010.04.001.
  45. Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G847–G851. doi: 10.1152/ajpgi.00522.2005.
  46. Kim JB, Xia YR, Romanoski CE, et al. Paraoxonase-2 modulates stress response of endothelial cells to oxidized phospholipids and a bacterial quorum-sensing molecule. Arterioscler Thromb Vasc Biol. 2011;31(11):2624–2633. doi: 10.1161/ATVBAHA.111.232827.
  47. Tang H, Grisè H. Cellular and molecular biology of HCV infection and hepatitis. Clin Sci (Lond). 2009;117(2):49–65. doi: 10.1042/CS20080631.
  48. González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Hepatitis C virus, oxidative stress and steatosis: current status and perspectives. Curr Mol Med. 2011;11(5):373–390. doi: 10.2174/156652411795976592.
  49. Ali EM, Shehata HH, Ali-Labib R, Esmail Zahra LM. Oxidant and antioxidant of arylesterase and paraoxonase as biomarkers in patients with hepatitis C virus. Clin Biochem. 2009;42(13–14):1394–1400. doi: 10.1016/j.clinbiochem.2009.06.007.
  50. García-Heredia A, Marsillach J, Aragonès G, et al. Serum paraoxonase-3 concentration is associated with the severity of hepatic impairment in patients with chronic liver disease. Clin Biochem. 2011;44(16):1320–1324. doi: 10.1016/j.clinbiochem.2011.08.003.
  51. Duygu F, Tekin Koruk S, Aksoy N. Serum paraoxonase and arylesterase activities in various forms of hepatitis B virus infection. J Clin Lab Anal. 2011;25(5):311–316. doi: 10.1002/jcla.20473.
  52. Schulpis KH, Barzeliotou A, Papadakis M, et al. Maternal chronic hepatitis B virus is implicated with low neonatal paraoxonase/arylesterase activities. Clin Biochem. 2008;41(4–5):282–287. doi: 10.1016/j.clinbiochem.2007.10.013.
  53. Fernández-Irigoyen J, Santamaría E, Sesma L, et al. Oxidation of specific methionine and tryptophan residues of apolipoprotein A-I in hepatocarcinogenesis. Proteomics. 2005;5(18):4964–4972. doi: 10.1002/pmic.200500070.
  54. Dubé MP, Lipshultz SE, Fichtenbaum CJ, et al. Effects of HIV infection and antiretroviral therapy on the heart and vasculature. Circulation. 2008;118(2):36–40. doi: 10.1161/CIRCULATIONAHA.107.189625.
  55. Rose H, Woolley I, Hoy J, et al. HIV infection and high-density lipoprotein: the effect of the disease vs the effect of treatment. Metabolism. 2006;55(1):90–95. doi: 10.1016/j.metabol.2005.07.012.
  56. Parra S, Alonso-Villaverde C, Coll B, et al. Serum paraoxonase-1 activity and concentration are influenced by human immunodeficiency virus infection. Atherosclerosis. 2007;194(1):175–181. doi: 10.1016/j.atherosclerosis.2006.07.024.
  57. Rosenblat M, Vaya J, Shih D, Aviram M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine. Atherosclerosis. 2005;179(1):69–77. doi: 10.1016/j.atherosclerosis.2004.10.028.
  58. Yuan J, Devarajan A, Moya-Castro R, et al. Putative innate immunity of antiatherogenic paraoxanase-2 via STAT5 signal transduction in HIV-1 infection of hematopoietic TF-1 cells and in SCID-hu mice. J Stem Cells. 2010;5(1):43–48. doi: jsc.2010.5.1.43.
  59. Aragonès G, García-Heredia A, Guardiola M, et al. Serum paraoxonase-3 concentration in HIV-infected patients. Evidence for a protective role against oxidation. J Lipid Res. 2012;53(1):168–174. doi: 10.1194/jlr.P018457.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2017



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах