Paraoxonase: The Universal Factor of Antioxidant Defense in Human Body

Cover Page
  • Authors: Borovkova E.I.1, Antipova N.V.2,3, Korneenko T.V.2, Shakhparonov M.I.2, Borovkov I.M.4
  • Affiliations:
    1. Pirogov Russian National Research Medical University
    2. M.M. Shemyakin and Yu.A. Ovchinnikov Institute of bioorganic chemistry of the Russian Academy of Sciences
    3. RUDN University
    4. Sechenov First Moscow State Medical University
  • Issue: Vol 72, No 1 (2017)
  • Pages: 5-10
  • Section: BIOCHEMISTRY: CURRENT ISSUES
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/764
  • DOI: https://doi.org/10.15690/vramn764
  • Cite item

Abstract


The paraoxonase (PON) gene family includes three members: PON1, PON2, and PON3 aligned in tandem on chromosome 7 in humans. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. Increased production of reactive oxygen species as a result of decreased activities of mitochondrial electron transport chain complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. PON1 and PON3 proteins can be detected in plasma and reside in the high-density lipoprotein fraction and protect against oxidative stress by hydrolyzing certain oxidized lipids in lipoproteins, macrophages, and atherosclerotic lesions. Paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. PON2 is involved in the antioxidative and anti-inflammatory response in intestinal epithelial cells. In contrast to PON1 and PON3, PON2 is cell-associated and is not found in plasma. It is widely expressed in a variety of tissues, including the kidney, and protects against cellular oxidative stress. Overexpression of PON2 reduces oxidative status, prevents apoptosis in vascular endothelial cells, and inhibits cell-mediated low density lipoprotein oxidation. PON2 also inhibits the development of atherosclerosis, via mechanisms involving the reduction of oxidative stress. In this review we explore the physiological roles of PON in disease development and modulation of PONs by infective (bacterial, viral) agents.

E. I. Borovkova

Pirogov Russian National Research Medical University

Email: Katyanikitina@mail.ru
ORCID iD: 0000-0001-7140-262X

Russian Federation

Доктор медицинских наук, доцент, профессор кафедры акушерства и гинекологии лечебного факультета. 

SPIN-код8897-8605

Адрес: 117997, Москва, ул. Островитянова, д. 1


N. V. Antipova

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of bioorganic chemistry of the Russian Academy of Sciences;
RUDN University

Author for correspondence.
Email: nadine.antipova@gmail.com
ORCID iD: 0000-0002-5799-7767

Russian Federation

Кандидат биологических наук, научный сотрудник ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН», доцент кафедры фармацевтической и токсикологической химии РУДН. 

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10

T. V. Korneenko

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of bioorganic chemistry of the Russian Academy of Sciences

Email: tvkorn@gmail.com
ORCID iD: 0000-0002-5899-6168

Russian Federation

Кандидат биологических наук, научный сотрудник.

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10

M. I. Shakhparonov

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of bioorganic chemistry of the Russian Academy of Sciences

Email: shakhparonov@gmail.com
ORCID iD: 0000-0001-5965-8067

Russian Federation

Доктор химических наук, ведущий научный сотрудник.

Адрес: 117997, Москва, ГСП-7, ул. Миклухо-Маклая, д. 16/10

I. M. Borovkov

Sechenov First Moscow State Medical University

Email: bigchanc97@gmail.ru
ORCID iD: 0000-0002-2017-8047

Russian Federation

Студент лечебного факультета.

SPIN-код4744-1115

Адрес: 119991, Москва, ул. Большая Пироговская, д. 2, стр. 2

  1. Jaouad LC, de Guise C, Berrougui H, et al. Age-related decrease in high-density lipoproteins antioxidant activity is due to an alteration in the PON1’s free sulfhydyl groups. Atherosclerosis. 2006;185(1):191–200. doi: 10.1016/j.atherosclerosis.2005.06.012
  2. Rodríguez-Sanabria F, Rull A, Beltrán-Debón R, et al. Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role. J Mol Histol. 2010;41(6):379–386. doi: 10.1007/s10735-010-9299-x
  3. Furlong CE. Paraoxonases: an historical perspective. In: Mackness B, Mackness M, Aviram M, Paragh G, editors. The paraoxonases: their role in disease development and xenobiotic metabolism. Dordrecht, The Netherlands: Springer; 2008. p. 3–31.
  4. Teiber JF, Draganov DI, La Du BN, et al. Lactonase and lactonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. Biochem Pharmacol. 2003;66(6):887–896. doi: 10.1016/s0006-2952(03)00401-5.
  5. Rosenblat M, Gaidukov L, Khersonsky O, et al. The catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J Biol Chem. 2006;281(11):7657–7665. doi: 10.1074/jbc.m512595200.
  6. Fuhrman B, Volkova N, Aviram M. Paraoxonase 1 (PON1) is present in postprandial chylomicrons. Atherosclerosis. 2005;180(1):55–61. doi: 10.1016/j.atherosclerosis.2004.12.009.
  7. Rajković Grdić M, Rumora L, Barišić K. The paraoxonase 1,2, and 3 in humans. Biochem Med (Zagreb). 2011;21(2):122–30. doi: 10.11613/bm.2011.020.
  8. Fuhrman B, Gantman A, Aviram M. Paraoxonase 1 (PON1) deficiency in mice is associated with reduced expression of macrophage SR-BI and consequently the loss of HDL cytoprotection against apoptosis. Atherosclerosis. 2010;211(1):61–68. doi: 10.1016/j.atherosclerosis.2010.01.025.
  9. Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA. 2008;299(11):1265–1267. doi: 10.1001/jama.299.11.1265
  10. Rosenblat M, Volkova N, Ward J, et al. Paraoxonase 1 (PON1) inhibits monocyte-to-macrophage differentiation. Atherosclerosis. 2011;219(1):49–56. doi: 10.1016/j.atherosclerosis.2011.06.054.
  11. Coombes RH, Crow JA, Dail MB, et al. Relationship of human paraoxonase-1 serum activity and genotype with atherosclerosis in individuals from the Deep South. Pharmacogenet Genomics. 2011;21(12):867–875. doi: 10.1097/fpc.0b013e32834cebc6.
  12. Costa LG, Vitalone A, Cole TB, Furlong CE. Modulation of paraoxonase (PON1) activity. Biochem Pharmacol. 2005;69(4):541–550. doi: 10.1016/j.bcp.2004.08.027.
  13. Marchegiani F, Marra M, Olivieri F, et al. Paraoxonase 1: genetics and activities during aging. Rejuvenation Res. 2008;11(1):113–127. doi: 10.1089/rej.2007.0582.
  14. Reddy ST, Wadleigh DJ, Grijalva V, et al. Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol. 2001;21(4):542–547. doi: 10.1161/01.atv.21.4.542.
  15. Giordano G, Cole TB, Furlong CE, Costa LG. Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role? Toxicol Appl Pharmacol. 2011;256(3):369–378. doi: 10.1016/j.taap.2011.02.014.
  16. Rosenblat M, Coleman R, Reddy ST, et al. Paraoxonase 2 attenuates macrophage triglyceride accumulation via inhibition of diacylglycerol acyltransferase 1. J Lipid Res. 2009;50(5):870–879. doi: 10.1194/jlr.m800550-jlr200.
  17. Meilin E, Aviram M, Hayek T. Paraoxonase 2 (PON2) decreases high glucose-induced macrophage triglycerides (TG) accumulation, via inhibition of NADPH-oxidase and DGAT1 activity: studies in PON2-deficient mice. Atherosclerosis. 2010;208(2):390–395. doi: 10.1016/j.atherosclerosis.2009.07.057.
  18. Marsillach J, Mackness B, Mackness M, et al. Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med. 2008;45(2):146–157. doi: 10.1016/j.freeradbiomed.2008.03.023.
  19. Precourt LP, Seidman E, Delvin E, et al. Comparative expression analysis reveals differences in the regulation of intestinal paraoxonase family members. Int J Biochem Cell Biol. 2009;41(7):1628–1637. doi: 10.1016/j.biocel.2009.02.013.
  20. Levy E, Trudel K, Bendayan M, et al. Biological role, protein expression, subcellular localization, and oxidative stress response of paraoxonase 2 in the intestine of humans and rats. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1252–1261. doi: 10.1152/ajpgi.00369.2007.
  21. Godeiro C Jr, Aguiar PM, Felicio AC, et al. PINK1 polymorphism IVS1-7 A→ G, exposure to environmental risk factors and anticipation of disease onset in Brazilian patients with early-onset Parkinson’s Disease. Neurosci Lett. 2010;469(1):155–158. doi: 10.1016/j.neulet.2009.11.064.
  22. Sanyal J, Chakraborty DP, Sarkar B, et al. Environmental and familial risk factors of Parkinsons disease: case-control study. Can J Neurol Sci. 2010;37(5):637–642. doi: 10.1017/s0317167100010829.
  23. Altenhofer S, Witte I, Teiber JF, et al. One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity. J Biol Chem. 2010;285(32):24398–24403. doi: 10.1074/jbc.m110.118604.
  24. Horke S, Witte I, Wilgenbus P, et al. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation. 2007;115(15):2055–2064. doi: 10.1161/circulationaha.106.681700.
  25. Horke S, Witte I, Altenhöfer S, et al. Paraoxonase 2 is down-regulated by the Pseudomonas aeruginosa quorumsensing signal N-(3-oxododecanoyl)-L-homoserine lactone and attenuates oxidative stress induced by pyocyanin. Biochem J. 2010;426(1):73–83. doi: 10.1042/bj20091414.
  26. Devarajan A, Bourquard N, Hama S, et al. Paraoxonase 2 deficiency alters mitochondrial function and exacerbates the development of atherosclerosis. Antioxid Redox Signal. 2011;14(3):341–351. doi: 10.1089/ars.2010.3430.
  27. Higgins GC, Beart PM, Shin YS, et al. Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimers Dis. 2010;20 Suppl 2:S453–473. doi: 10.3233/JAD-2010-100321.
  28. Burton G, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig. 2004;11(6):342–352. doi: 10.1016/j.jsgi.2004.03.003.
  29. Bourquard N, Ng CJ, Reddy ST. Impaired hepatic insulin signalling in PON2-deficient mice: a novel role for the PON2/apoE axis on the macrophage inflammatory response. Biochem J. 2011;436(1):91–100. doi: 10.1042/bj20101891.
  30. Schweikert EM, Amort J, Wilgenbus P, et al. Paraoxonases-2 and -3 are important defense enzymes against pseudomonas aeruginosa virulence factors due to their anti-oxidative and anti-inflammatory properties. J Lipids. 2012;2012:1–9. doi: 10.1155/2012/352857.
  31. Costa LG, de Laat R, Dao K, et al. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection. Neurotoxicology. 2014;43:3-9. doi: 10.1016/j.neuro.2013.08.011.
  32. Ng CJ, Bourquard N, Hama SY, et al. Adenovirus-mediated expression of human paraoxonase 3 protects against the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2007;27(6):1368–1374. doi: 10.1161/ATVBAHA.106.134189.
  33. Marsillach J, Mackness B, Mackness M, et al. Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med. 2008;45(2):146-157. doi: 10.1016/j.freeradbiomed.2008.03.023.
  34. Camps J, Pujol I, Ballester F, et al. Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in Gram-negative bacteria. Antimicrob Agents Chemother. 2011;55(4):1325–1331. doi: 10.1128/AAC.01502-10.
  35. Butorac D, Celap I, Kačkov S, et al. Paraoxonase 1 activity and phenotype distribution in premenopausal and postmenopausal women. Biochem Med (Zagreb). 2014;24(2):273–280. doi: 10.11613/bm.2014.030.
  36. Andrade AZ, Rodrigues JK, Dib LA, et al. [Serum markers of oxidative stress in infertile women with endometriosis. (In Portuguese).] Rev Bras Ginecol Obstet. 2010;32(6):279–285. doi: 10.1590/s0100-72032010000600005.
  37. Augoulea A, Mastorakos G, Lambrinoudaki I, et al. The role of the oxidative-stress in the endometriosis-related infertility. Gynecol Endocrinol. 2009;25(2):75–81. doi: 10.1080/09513590802485012.
  38. Bragatto FB, Barbosa CP, Christofolini DM, et al. There is no relationship between Paraoxonase serum level activity in women with endometriosis and the stage of the disease: an observational study. Reprod Health. 2013;10:32. doi: 10.1186/1742-4755-10-32.
  39. Draganov DI, Teiber JF, Speelman A, et al. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005;46(6):1239–1247. doi: 10.1194/jlr.M400511-JLR200.
  40. Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost. 2011;106(5):858–867. doi: 10.1160/TH11-06-0392.
  41. Han CY, Chiba T, Campbell JS, et al. Reciprocal and coordinate regulation of serum amyloid A versus apolipoprotein A-I and paraoxonase-1 by inflammation in murine hepatocytes. Arterioscler Thromb Vasc Biol. 2006;26(8):1806–1813. doi: 10.1161/01.ATV.0000227472.70734.ad.
  42. Draganov D, Teiber J, Watson C, et al. PON1 and oxidative stress in human sepsis and an animal model of sepsis. Adv Exp Med Biol. 2010;660:89–97. doi: 10.1007/978-1-60761-350-3_9.
  43. Novak F, Vavrova L, Kodydkova J, et al. Decreased paraoxonase activity in critically ill patients with sepsis. Clin Exp Med. 2010;10(1):21–25. doi: 10.1007/s10238-009-0059-8.
  44. Campbell LA, Yaraei K, Van Lenten B, et al. The acute phase reactant response to respiratory infection with Chlamydia pneumoniae: implications for the pathogenesis of atherosclerosis. Microbes Infect. 2010;12(8–9):598–606. doi: 10.1016/j.micinf.2010.04.001.
  45. Choi J, Ou JH. Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G847–G851. doi: 10.1152/ajpgi.00522.2005.
  46. Kim JB, Xia YR, Romanoski CE, et al. Paraoxonase-2 modulates stress response of endothelial cells to oxidized phospholipids and a bacterial quorum-sensing molecule. Arterioscler Thromb Vasc Biol. 2011;31(11):2624–2633. doi: 10.1161/ATVBAHA.111.232827.
  47. Tang H, Grisè H. Cellular and molecular biology of HCV infection and hepatitis. Clin Sci (Lond). 2009;117(2):49–65. doi: 10.1042/CS20080631.
  48. González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Hepatitis C virus, oxidative stress and steatosis: current status and perspectives. Curr Mol Med. 2011;11(5):373–390. doi: 10.2174/156652411795976592.
  49. Ali EM, Shehata HH, Ali-Labib R, Esmail Zahra LM. Oxidant and antioxidant of arylesterase and paraoxonase as biomarkers in patients with hepatitis C virus. Clin Biochem. 2009;42(13–14):1394–1400. doi: 10.1016/j.clinbiochem.2009.06.007.
  50. García-Heredia A, Marsillach J, Aragonès G, et al. Serum paraoxonase-3 concentration is associated with the severity of hepatic impairment in patients with chronic liver disease. Clin Biochem. 2011;44(16):1320–1324. doi: 10.1016/j.clinbiochem.2011.08.003.
  51. Duygu F, Tekin Koruk S, Aksoy N. Serum paraoxonase and arylesterase activities in various forms of hepatitis B virus infection. J Clin Lab Anal. 2011;25(5):311–316. doi: 10.1002/jcla.20473.
  52. Schulpis KH, Barzeliotou A, Papadakis M, et al. Maternal chronic hepatitis B virus is implicated with low neonatal paraoxonase/arylesterase activities. Clin Biochem. 2008;41(4–5):282–287. doi: 10.1016/j.clinbiochem.2007.10.013.
  53. Fernández-Irigoyen J, Santamaría E, Sesma L, et al. Oxidation of specific methionine and tryptophan residues of apolipoprotein A-I in hepatocarcinogenesis. Proteomics. 2005;5(18):4964–4972. doi: 10.1002/pmic.200500070.
  54. Dubé MP, Lipshultz SE, Fichtenbaum CJ, et al. Effects of HIV infection and antiretroviral therapy on the heart and vasculature. Circulation. 2008;118(2):36–40. doi: 10.1161/CIRCULATIONAHA.107.189625.
  55. Rose H, Woolley I, Hoy J, et al. HIV infection and high-density lipoprotein: the effect of the disease vs the effect of treatment. Metabolism. 2006;55(1):90–95. doi: 10.1016/j.metabol.2005.07.012.
  56. Parra S, Alonso-Villaverde C, Coll B, et al. Serum paraoxonase-1 activity and concentration are influenced by human immunodeficiency virus infection. Atherosclerosis. 2007;194(1):175–181. doi: 10.1016/j.atherosclerosis.2006.07.024.
  57. Rosenblat M, Vaya J, Shih D, Aviram M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: a possible role for lysophosphatidylcholine. Atherosclerosis. 2005;179(1):69–77. doi: 10.1016/j.atherosclerosis.2004.10.028.
  58. Yuan J, Devarajan A, Moya-Castro R, et al. Putative innate immunity of antiatherogenic paraoxanase-2 via STAT5 signal transduction in HIV-1 infection of hematopoietic TF-1 cells and in SCID-hu mice. J Stem Cells. 2010;5(1):43–48. doi: jsc.2010.5.1.43.
  59. Aragonès G, García-Heredia A, Guardiola M, et al. Serum paraoxonase-3 concentration in HIV-infected patients. Evidence for a protective role against oxidation. J Lipid Res. 2012;53(1):168–174. doi: 10.1194/jlr.P018457.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 43

PDF (Russian) - 86

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies