Аптамеры для терапии бактериальных инфекций: проблемы и перспективы

Обложка


Цитировать

Полный текст

Аннотация

Аптамеры ― короткие одноцепочечные фрагменты нуклеиновых кислот, которые в процессе направленной химической «эволюции в пробирке» на основе технологии SELEX отбирают на специфичность к избранной молекулярной мишени. Возможность получать при помощи SELEX олигонуклеотиды, связывающие широчайший спектр высоко- и низкомолекулярных лигандов, а также простота автоматизированного синтеза привели к созданию широкого спектра приложений аптамеров ― от биосенсоров до противоопухолевых препаратов. С точки зрения медицинской химии, аптамеры являются новым классом молекул, на основе которых могут быть разработаны лекарственные препараты. Поэтому, а также ввиду стабильности, относительной простоты синтеза и создания все более эффективных стратегий селекции мишеньспецифических молекул аптамеры привлекают внимание разработчиков лекарственных средств, в том числе и антибактериальных. Интерес к антибактериальным аптамерам усиливается и в связи с проблемами, возникшими при разработке принципиально новых антибактериальных средств на основе классических химических соединений ― как малых органических молекул, так и синтетических модификаций известных антибиотиков. В настоящем обзоре рассматриваются работы, направленные на создание противоинфекционных аптамеров, и обсуждаются как потенциал, так и существующие на данном этапе ограничения, свойственные этому классу терапевтических молекул.

Об авторах

Н. А. Зенинская

Государственный научный центр прикладной микробиологии и биотехнологии

Email: nataliazeninskaya@mail.ru
ORCID iD: 0000-0002-5388-292X

младший научный сотрудник лаборатории молекулярной биологии,

142279, Московская обл., Серпуховский р-н, пос. Оболенск

Россия

А. В. Колесников

Государственный научный центр прикладной микробиологии и биотехнологии;
Институт инженерной иммунологии

Email: pfu2000@mail.ru
ORCID iD: 0000-0001-8108-0265

кандидат биологических наук, ведущий научный сотрудник лаборатории молекулярной биологии,

142279, Московская обл., Серпуховский р-н, пос. Оболенск;

заведующий лабораторией иммунопротеомики микроорганизмов,

Любучаны

Россия

А. К. Рябко

Государственный научный центр прикладной микробиологии и биотехнологии

Email: ryabko_alena@mail.ru
ORCID iD: 0000-0001-7478-909X

научный сотрудник лаборатории молекулярной биологии,

142279, Московская обл., Серпуховский р-н, пос. Оболенск

Россия

И. Г. Шемякин

Государственный научный центр прикладной микробиологии и биотехнологии

Email: shemyakin@obolensk.org
ORCID iD: 0000-0001-9667-1674

доктор биологических наук, профессор, заместитель директора по научной работе, заведующий лабораторией молекулярной биологии,

142279, Московская обл., Серпуховский р-н, пос. Оболенск

Россия

И. А. Дятлов

Государственный научный центр прикладной микробиологии и биотехнологии

Автор, ответственный за переписку.
Email: dyatlov@obolensk.org
ORCID iD: 0000-0003-1078-4585

член-корреспондент РАМН, доктор медицинских наук, профессор, директор,

142279, Московская обл., Серпуховский р-н, пос. Оболенск

А. В. Козырь

Государственный научный центр прикладной микробиологии и биотехнологии

Email: avkozyr@gmail.com
ORCID iD: 0000-0001-6295-5943

кандидат биологических наук, ведущий научный сотрудник лаборатории молекулярной биологии,

142279, Московская обл., Серпуховский р-н, пос. Оболенск

Россия

Список литературы

  1. Klussmann S, editor. The aptamer handbook: functional oligonucleotides and their applications. Weinheim: Wiley-VCH; 2006. doi: 10.1002/3527608192.
  2. Tan W, Fang X, editors. Aptamers selected by cell-SELEX for theranostics. Berlin: Springer-Verlag Berlin Heidelberg; 2015. 352 p. doi: 10.1007/978-3-662-46226-3.
  3. Ptashne M, Hopkins N. The operators controlled by the lambda phage repressor. Proc Natl Acad Sci U S A. 1968;60(4):1282–1287. doi: 10.1073/pnas.60.4.1282.
  4. Westhof E. Isostericity and tautomerism of base pairs in nucleic acids. FEBS Lett. 2014;588(15):2464–2469. doi: 10.1016/j. febslet.2014.06.031.
  5. Cech TR. Ribozymes, the first 20 years. Biochem Soc Trans. 2002;30(6):1162–1166. doi: 10.1042/bst0301162.
  6. Silverman SK. Catalytic DNA: scope, applications, and biochemistry of deoxyribozyme. Trends Biochem Sci. 2016;41(7):595–609. doi: 10.1016/j.tibs.2016.04.010.
  7. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–822. doi: 10.1038/346818a0.
  8. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–510. doi: 10.1126/science.2200121.
  9. FDA orders new phase III trial for anticancer drug; SuperGen withdraws orathecin NDA; FDA okays keratinocyte growth factor for prevention of mucositis during chemotherapy; AstraZeneca withdraws application for European approval of Iressa; FDA approves anti-angiogenesis agent for “wet” age-related macular degeneration; Access pharmaceuticals gets clearance for clinical trials of AP5346; FDA establishes nanotechnology site; Microarray chip for genetic analysis receives FDA clearance. Biotechnol Law Rep. 2005;24(2):177–179. doi: 10.1089/blr.2005.24.177.
  10. Weinberg MS. Therapeutic Aptamers March On. Mol Ther Nucleic Acids. 2014;3(9):e194. doi: 10.1038/mtna.2014.46
  11. Blind M, Blank M. Aptamer selection technology and recent advances. Mol Ther Nucleic Acids. 2015;4(1):e223. doi: 10.1038/ mtna.2014.74.
  12. Ozer A, Pagano JM, Lis JT. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization. Mol Ther Nucleic Acids. 2014;3(8):e183. doi: 10.1038/mtna.2014.34.
  13. Schutze T, Wilhelm B, Greiner N, et al. Probing the SELEX process with next-generation sequencing. PLoS One. 2011;6(12):e29604. doi: 10.1371/journal.pone.0029604.
  14. Hicke BJ, Stephens AW. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest. 2000;106(8):923–928. doi: 10.1172/JCI11324.
  15. Sun H, Zu Y. Aptamers and their applications in nanomedicine. Small. 2015;11(20):2352–2364. doi: 10.1002/smll.201403073.
  16. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–550. doi: 10.1038/nrd3141.
  17. Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu Rev Med. 2005;56(1):555–583. doi: 10.1146/annurev.med.56.062904.144915.
  18. Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides. 2009;19(3):209–222. doi: 10.1089/oli.2009.0199.
  19. Maier KE, Levy M. From selection hits to clinical leads: progress in aptamer discovery. Mol Ther Methods Clin Dev. 2016;5:16014. doi: 10.1038/mtm.2016.14.
  20. Bruno JG. A review of therapeutic aptamer conjugates with emphasis on new approaches. Pharmaceuticals (Basel). 2013;6(3):340–357. doi: 10.3390/ph6030340.
  21. Rohloff JC, Gelinas AD, Jarvis TC, et al. Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol Ther Nucleic Acids. 2014;3(10):e201. doi: 10.1038/mtna.2014.49.
  22. Thiel K. Oligo oligarchy-the surprisingly small world of aptamers. Nat Biotechnol. 2004;22(6):649–651. doi: 10.1038/nbt0604-649.
  23. Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371–387. doi: 10.1038/nrd3975.
  24. Ozalp VC, Bilecen K, Kavruk M, Oktem HA. Antimicrobial aptamers for detection and inhibition of microbial pathogen growth. Future Microbiol. 2013;8(3):387–401. doi: 10.2217/fmb.12.149.
  25. Shum KT, Lui EL, Wong SC, et al. Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry. 2011;50(15):3261–3271. doi: 10.1021/bi2001455.
  26. Baig IA, Moon JY, Lee SC, et al. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase. Biochim Biophys Acta. 2015;1854(10 Pt A):1338–1350. doi: 10.1016/j.bbapap.2015.05.003.
  27. Gokhale K, Tilak B. Mechanisms of bacterial acetohydroxyacid synthase (AHAS) and specific inhibitors of Mycobacterium tuberculosis AHAS as potential drug candidates against tuberculosis. Curr Drug Targets. 2015;16(7):689–699. doi: 10.2174/13894501166 66150416115547.
  28. Schlesinger SR, Lahousse MJ, Foster TO, Kim SK. Metallo-β- lactamases and aptamer-based inhibition. Pharmaceuticals (Basel). 2011;4(2):419–428. doi: 10.3390/ph4020419.
  29. Teng J, Yuan F, Ye Y, et al. Aptamer-based technologies in foodborne pathogen detection. Front Microbiol. 2016;7:1426. doi: 10.3389/fmicb.2016.01426.
  30. Hamula CL, Peng H, Wang Z, et al. The effects of SELEX conditions on the resultant aptamer pools in the selection of aptamers binding to bacterial cells. J Mol Evol. 2015;81(5–6):194–209. doi: 10.1007/s00239-015-9711-y.
  31. Kolovskaya OS, Savitskaya AG, Zamay TN, et al. Development of bacteriostatic DNA aptamers for salmonella. J Med Chem. 2013;56(4):1564–1572. doi: 10.1021/jm301856j.
  32. Ohuchi S. Cell-SELEX Technology. Biores Open Access. 2012;1(6):265–272. doi: 10.1089/biores.2012.0253.
  33. Chen F, Zhou J, Luo F, et al. Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun. 2007;357(3):743–748. doi: 10.1016/j.bbrc.2007.04.007.
  34. Pan Q, Wang Q, Sun X, et al. Aptamer against mannose-capped lipoarabinomannan inhibits virulent Mycobacterium tuberculosis infection in mice and rhesus monkeys. Mol Ther. 2014;22(5):940– 951. doi: 10.1038/mt.2014.31.
  35. Galili U. Anti-Gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits. Immunology. 2013;140(1):1–11. doi: 10.1111/imm.12110.
  36. Kristian SA, Hwang JH, Hall B, et al. Retargeting pre-existing human antibodies to a bacterial pathogen with an alpha-Gal conjugated aptamer. J Mol Med (Berl). 2015;93(6):619–631. doi: 10.1007/ s00109-015-1280-4.
  37. Abdel-Motal UM, Guay HM, Wigglesworth K, et al. Immunogenicity of influenza virus vaccine is increased by anti-gal-mediated targeting to antigen-presenting cells. J Virol. 2007;81(17):9131– 9141. doi: 10.1128/JVI.00647-07.
  38. Bruno JG, Carrillo MP, Phillips T. In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes. Folia Microbiol (Praha). 2008;53(4):295–302. doi: 10.1007/s12223-008- 0046-6.
  39. Dixon TC, Fadl AA, Koehler TM, et al. Early Bacillus anthracis-macrophage interactions: intracellular survival survival and escape. Cell Microbiol. 2000;2(6):453–463. doi: 10.1046/j.1462- 5822.2000.00067.x.
  40. Ali SR, Timmer AM, Bilgrami S, et al. Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity. 2011;35(1):34–44. doi: 10.1016/j.immuni.2011.04.015.
  41. Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17(3):173–183. doi: 10.1016/j.micinf.2015.01.004.
  42. Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62. doi: 10.1038/nrmicro3161.
  43. Pan Q, Zhang XL, Wu HY, et al. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi. Antimicrob Agents Chemother. 2005;49(10):4052–4060. doi: 10.1128/aac.49.10.4052-4060.2005.
  44. Balcazar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol. 2015;6:1216. doi: 10.3389/fmicb.2015.01216.
  45. Ning Y, Cheng L, Ling M, et al. Efficient suppression of biofilm formation by a nucleic acid aptamer. Pathog Dis. 2015;73(6):ftv034. doi: 10.1093/femspd/ftv034.
  46. Chen F, Zhang X, Zhou J, et al. Aptamer inhibits Mycobacterium tuberculosis (H37Rv) invasion of macrophage. Mol Biol Rep. 2012;39(3):2157–2162. doi: 10.1007/s11033-011-0963-3.
  47. Feng C, Dai S, Wang L. Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens Bioelectron. 2014;59:64–74. doi: 10.1016/j.bios.2014.03.014.
  48. Hurwitz M, Eliot RS. Arrhythmias in acute myocardial infarction. Dis Chest. 1964;45(6):616–626. doi: 10.1378/chest.45.6.616.
  49. Bhardwaj AK, Vinothkumar K, Rajpara N. Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov. 2013;8(1):68–83. doi: 10.2174/1574891x11308010012.
  50. Zhao ZG, Yu YM, Xu BY, et al. Screening and anti-virulent study of N-acyl homoserine lactones DNA aptamers against Pseudomonas aeruginosa quorum sensing. Biotechnol Bioprocess Eng. 2013;18(2):406–412. doi: 10.1007/s12257-012-0556-6.
  51. Cai S, Singh BR. Strategies to design inhibitors of Clostridium botulinum neurotoxins. Infect Disord Drug Targets. 2007;7(1):47–57. doi: 10.2174/187152607780090667.
  52. Tok JB, Fischer NO. Single microbead SELEX for efficient ssDNA aptamer generation against botulinum neurotoxin. Chem Commun (Camb). 2008;(16):1883–1885. doi: 10.1039/b717936g.
  53. Chang TW, Blank M, Janardhanan P, et al. In vitro selection of RNA aptamers that inhibit the activity of type A botulinum neurotoxin. Biochem Biophys Res Commun. 2010;396(4):854–860. doi: 10.1016/j.bbrc.2010.05.006.
  54. Jacobsen JA, Jourden JLM, Mille MT, Cohen SM. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta. 2010;1803(1):72–94. doi: 10.1016/j.bbamcr.2009.08.006.
  55. Kolesnikov AV, Kozyr’ AV, Shemyakin IG. The prospects for using aptamers in diagnosing bacterial infections. Mol. Gen. Mikrobiol. Virol. 2012;27(2):49–55. doi: 10.3103/ s0891416812020048
  56. Hong KL, Sooter LJ. Single-stranded DNA aptamers against pathogens and toxins: identification and biosensing applications. Biomed Res Int. 2015;2015:419318. doi: 10.1155/2015/419318.
  57. Bruno JG, Richarte AM, Carrillo MP, Edge A. An aptamer beacon responsive to botulinum toxins. Biosens Bioelectron. 2012;31(1):240–243. doi: 10.1016/j.bios.2011.10.024.
  58. Klussmann S, Nolte A, Bald R, et al. Mirror-image RNA that binds D-adenosine. Nat Biotechnol. 1996;14(9):1112–1115. doi: 10.1038/ nbt0996-1112.
  59. Purschke WG, Radtke F, Kleinjung F, Klussmann S. A DNA Spiegelmer to staphylococcal enterotoxin B. Nucleic Acids Res. 2003;31(12):3027–3032. doi: 10.1093/nar/gkg413.
  60. Vivekananda J, Salgado C, Millenbaugh NJ. DNA aptamers as a novel approach to neutralize Staphylococcus aureus alphatoxin. Biochem Biophys Res Commun. 2014;444(3):433–438. doi: 10.1016/j.bbrc.2014.01.076.
  61. Wang K, Gan L, Jiang L, et al. Neutralization of staphylococcal enterotoxin B by an aptamer antagonist. Antimicrob Agents Chemother. 2015;59(4):2072–2077. doi: 10.1128/AAC.04414-14.
  62. Berens C, Groher F, Suess B. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression. Biotechnol J. 2015;10(2):246–257. doi: 10.1002/biot.201300498.
  63. Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. 2002;419(6910):952–956. doi: 10.1038/nature01145.
  64. Cressina E, Chen L, Moulin M, et al. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Biochem Soc Trans. 2011;39(2):652–657. doi: 10.1042/BST0390652.
  65. Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol. 2004;5(6):451–463. doi: 10.1038/nrm1403.
  66. Wittmann A, Suess B. Engineered riboswitches: Expanding researchers’ toolbox with synthetic RNA regulators. FEBS Lett. 2012;586(15):2076–2083. doi: 10.1016/j.febslet.2012.02.038.
  67. Topp S, Gallivan JP. Emerging applications of riboswitches in chemical biology. ACS Chem Biol. 2010;5(1):139–148. doi: 10.1021/ cb900278x.
  68. Trausch JJ, Batey RT. Design of modular “plug-and-play” expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices. Methods Enzymol. 2015;550:41–71. doi: 10.1016/bs.mie.2014.10.031.
  69. Hughes D, Karlen A. Discovery and preclinical development of new antibiotics. Ups J Med Sci. 2014;119(2):162–169. doi: 10.3109/03009734.2014.896437.
  70. Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517(7535):455– 459. doi: 10.1038/nature14098.
  71. Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223–227. doi: 10.1126/science.1106753.
  72. Kavruk M, Celikbicak O, Ozalp VC, et al. Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chem Commun (Camb). 2015;51(40):8492–8495. doi: 10.1039/c5cc01869b.
  73. Song MY, Jurng J, Park YK, Kim BC. An aptamer cocktailfunctionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria. J Hazard Mater. 2016;318:247–254. doi: 10.1016/j.jhazmat.2016.07.016.
  74. Ornellas PO, Antunes LD, Fontes KB, et al. Effect of the antimicrobial photodynamic therapy on microorganism reduction in deep caries lesions: a systematic review and meta-analysis. J Biomed Opt. 2016;21(9):90901. doi: 10.1117/1.jbo.21.9.090901.
  75. Zoccolillo ML, Rogers SC, Mang TS. Antimicrobial photodynamic therapy of S. mutans biofilms attached to relevant dental materials. Lasers Surg Med. Forthcoming 2016. doi: 10.1002/lsm.22534.
  76. Meitert J, Aram R, Wiesemann K, et al. Monitoring the expression level of coding and non-coding RNAs using a TetR inducing aptamer tag. Bioorg Med Chem. 2013;21(20):6233–6238. doi: 10.1016/j.bmc.2013.07.035.
  77. Chaloin L, Lehmann MJ, Sczakiel G, Restle T. Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res. 2002;30(18):4001–4008. doi: 10.1093/nar/gkf522.
  78. Yosef I, Manor M, Kiro R, Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A. 2015;112(23):7267–7272. doi: 10.1073/pnas.1500107112.
  79. Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11(2):95–105. doi: 10.1038/ nrmicro2937.
  80. Lee CH, Han SR, Lee SW. Therapeutic applications of aptamerbased riboswitches. Nucleic Acid Ther. 2016;26(1):44–51. doi: 10.1089/nat.2015.0570.
  81. Vazquez-Anderson J, Contreras LM. Regulatory RNAs: charming gene management styles for synthetic biology applications. RNA Biol. 2013;10(12):1778–1797. doi: 10.4161/rna.27102.
  82. Wang S, Kong Q, Curtiss R. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog. 2013;58:17–28. doi: 10.1016/j.micpath.2012.10.006.
  83. Mechaly A, Levy H, Epstein E, et al. A novel mechanism for antibody-based anthrax toxin neutralization: inhibition of preporeto-pore conversion. J Biol Chem. 2012;287(39):32665–32673. doi: 10.1074/jbc.M112.400473.
  84. Tian L, Heyduk T. Bivalent ligands with long nanometer-scale flexible linkers. Biochemistry. 2009;48(2):264–275. doi: 10.1021/bi801630b.
  85. Hasegawa H, Savory N, Abe K, Ikebukuro K. Methods for improving aptamer binding affinity. Molecules. 2016;21(4):421. doi: 10.3390/molecules21040421.
  86. Diafa S, Hollenstein M. Generation of aptamers with an expanded chemical repertoire. Molecules. 2015;20(9):16643–16671. doi: 10.3390/molecules200916643.
  87. Gupta S, Hirota M, Waugh SM, et al. Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem. 2014;289(12):8706–8719. doi: 10.1074/jbc.M113.532580.
  88. Lollo B, Steele F, Gold L. Beyond antibodies: new affinity reagents to unlock the proteome. Proteomics. 2014;14(6):638–644. doi: 10.1002/pmic.201300187.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2016



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах