ИММУНОЛОГИЧЕСКИЕ НАРУШЕНИЯ И КОГНИТИВНЫЙ ДЕФИЦИТ ПРИ СТРЕССЕ И ФИЗИОЛОГИЧЕСКОМ СТАРЕНИИ. ЧАСТЬ I: ПАТОГЕНЕЗ И ФАКТОРЫ РИСКА
- Авторы: Пухальский А.Л.1, Шмарина Г.В.2, Алёшкин В.А.3
-
Учреждения:
- Медико-генетический научный центр, Москва, Российская Федерация
- Медико-генетический научный центр, Москва
- Московский НИИ эпидемиологии и микробиологии им. Г.Н. Габричевского
- Выпуск: Том 69, № 5-6 (2014)
- Страницы: 14-22
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ ПАТОФИЗИОЛОГИИ
- Дата публикации:
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/423
- DOI: https://doi.org/10.15690/vramn.v69i5-6.1038
- ID: 423
Цитировать
Полный текст
Аннотация
а также предлагаются новые подходы к терапии подобных состояний. У млекопитающих сложный комплекс адаптационных механизмов представлен в виде триады, образованной центральной нервной, иммунной и эндокринной системой, которые постоянно обмениваются сигналами в виде нервных импульсов и растворимых медиаторов. Головной мозг, защищенный гематоэнцефалическим барьером (ГЭБ) от проникновения потенциально опасных клеток и растворимых факторов, самостоятельно продуцирует цитокины, которые вместе с другими нейромедиаторами регулируют процессы обучения и формирования памяти, а также нейрогенез у взрослых особей. Стресс любого происхождения сопровождается ростом концентрации цитокинов в крови и повышением проницаемости ГЭБ. В результате циркулирующие в крови цитокины могут проникать в мозг, где начинают выполнять «неиммунологические» функции. Ослабление барьерной функции ГЭБ и развивающаяся нейровоспалительная реакция способствуют массовой миграции дендритных клеток и лимфоцитов из периваскулярного пространства в паренхиму мозга. Вторжение чуждых центральной нервной системе медиаторов и иммунных клеток вызывает развитие когнитивных расстройств как у человека, так и у экспериментальных животных. Повторные эпизоды стресса способствуют накоплению в головном мозге иммунных клеток, обусловливают необратимое изменение проницаемости ГЭБ, нарушают нейрогенез у взрослых особей в зубчатой извилине гиппокампа. Подобные неблагоприятные изменения протекают в головном мозге пожилых людей при нормальном физиологическом старении. Более того, длительном стрессе и при физиологическом старении возникают сходные иммунологические и гормональные нарушения, прежде всего гиперактивация и последующее истощение гипоталамо-гипофизарно-надпочечниковой оси, накопление избыточного количества регуляторных Т клеток, снижение продукции дегидроэпиандростерона.
Об авторах
А. Л. Пухальский
Медико-генетический научный центр, Москва, Российская Федерация
Email: osugariver@yahoo.com
PhD, professor, chief research scientist of the Department of Cystic Fibrosis of Research Centre of Medical Genetics (RCMG). Address: 1, Moskvorech’e Street, Moscow, RF, 115478.
РоссияГ. В. Шмарина
Медико-генетический научный центр, Москва
Автор, ответственный за переписку.
Email: osugariver@yahoo.com
кандидат медицинских наук, ведущий научный сотрудник отдела муковисцидоза МГНЦ Россия
В. А. Алёшкин
Московский НИИ эпидемиологии и микробиологии им. Г.Н. Габричевского
Email: info@gabrich.com
доктор биологических наук, профессор, директор МНИИЭМ им. Г.Н. Габричевского Россия
Список литературы
- Maninger N., Wolokowitz O.M., Reus V.I. et al. Neurological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front. Neuroendocrinoil. 2009;
- : 65–91.
- Hazeldine J., Arlt W., Lord J.M. Dehydroepiandrosterone
- as a regulator of immune cell function. J. Steroid Biochem. Mol. Biol. 2010; 120: 127–136.
- Goncharov N.P., Katsiya G.V. V kn.: Gormon zdorov'ya i dolgoletiya [In book Hormone of Health and Longevity]. Moscow, ADAMANT", 2012. 159 p.
- Chen J., Johnson R.W. Dehydroepiandrosterone-sulfate did not mitigate sickness behavior in mice. Physiol. Behav. 2004; 82: 713–719.
- Labrie F., Belanger A., Cusan L. et al. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J. Clin. Endocrinol. Metab. 1997; 82: 2396–2402.
- Sulcova J., Hill M., Hampl R., Starka L. Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulphate in normal subjects. J. Endocrinol. 1997; 154: 57–62.
- Pukhalsky A., Shmarina G., Alioshkin V. The Number of
- Regulatory T Cells : Purs uit of the Golden Mean. In: Regulatory T Cells. R.S. Hayashi (ed.). Nova Science Publishers Inc. 2010. P. 261–268.
- Pukhal'skii A.L., Shmarina G.V., Aleshkin V.A. Vestnik RAMN = Annals of RAMS. 2011; 8: 24–33.
- Elenkov I.J., Iezzoni D.G., Daly A. et al. Cytokine disregulation, inflammation and well-being. Neuroimmunomodulation. 2005; 12: 255–269.
- Dhabhar F.S, Malarkey W.B., Neri E., McEwen B.S. Stress-induced redistribution of immune cells — from barracks to boulevards to battlefields: a tale of three hormones — Curt Richter Award winner. Psychoneuroendocrinology. 2012; 37: 1345–1368.
- Ziv Y., Ron N., Butovsky O. et al. Immunecells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 2006; 9: 268–275.
- Wolf S.A., Steiner B., Akpinarli A. et al. CD4-positive T
- lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol. 2009; 182: 3979–3984.
- Wolf S.A., Steiner B., Wengner A. et al. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus. FASEB J. 2009; 23: 3121–3128.
- Ron-Harel N., Cardon M., Schwartz M. Brain homeostasis is maintained by «danger» signals stimulating a supportive immune response within the brain’s borders. Brain Behav. Immun. 2011; 25: 1036–1043.
- Sorrells S.F., Caso J.R., Munhoz C.D., Sapolsky R.M. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron. 2009; 64: 33–39.
- Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 2011; 25: 181–213.
- Yuen E.Y., Liu W., Karatsoreos I.N. et al. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proc. Natl. Acad. Sci. USA. 2009; 106: 14075–14079.
- Garcia-Bueno B., Caso J.R., Leza J.C. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci. Biobehav. Rev. 2008; 32: 1136–1151.
- Mathieu P., Battista D., Depino A. et al. The more you
- have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J. Neurochem. 2010; 112: 1368–1385.
- Finch C.E., Laping N.J., Morgan T.E. et al. TGF-beta 1 is an organizer of responses to neurodegeneration. J. Cell Biochem. 1993; 53: 314–322.
- Nolan Y., Maher F.O., Martin D.S. et al. Role of interleukin-4 in regulation of age-related inflammatory changes in the hippocampus. Biol. Chem. 2005; 280: 9354–9362.
- Negrini S., Fenoglio D., Balestra P. et al. Endocrine regulation of suppressor lymphocytes. Role of the glucocorticoids-induced TNF-like receptor. Ann. NY Acad. Sci. 2006; 1069: 377–385.
- Wilkinson C.W., Petrie E.C., Murray S.R. et al. Human
- glucocorticoid feedback inhibition is reduced in older individuals: evening study. J. Clin. Endocrinol. Metab. 2001; 86: 545–550.
- Heffner K.L. Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol. Allergy Clin. North Am. 2011; 31: 95–108.
- Bornstein S.R., Engeland W.C., Ehrhart-Bornstein M., Herman J.P. Dissociation of ACTH and glucocorticoids. Trends Endocrinol. Metab. 2008; 19 (5): 175–180.
- Butcher S.K., Lord J.M. Stress responses and innate immunity: aging as a contributory factor. Aging Cell. 2004; 3: 151–160.
- Godbout J.P., Moreau M., Lestage J. et al. Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology. 2008; 33: 2341–2351.
- Buchanan J.B., Sparkman N.L., Chen J., Johnson R.W. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice. Psychoneuroendocrinology. 2008; 33: 755–765.
- Bower J.E., Ganz P.A., Aziz N. Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosom. Med. 2005; 67: 277–280.
- Gaab, J., Baumann S., Budnoik A. et al. Reduced reactivity and enhanced negative feedback sensitivity of the hypothalamuspituitary- adrenal axis in chronic whiplash-associated disorder. Pain. 2005; 119: 219–224.
- Weiner H.L. Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunol. Rev. 2001; 182: 207–214.
- Kipnis J., Schwartz M. Controlled autoimmunity in CNS
- maintenance and repair: naturally occurring CD4+CD25+
- regulatory T-Cells at the crossroads of health and disease.
- Neuromolecular. Med. 2005; 7: 197–206.
- Cohen H., Ziv Y., Cardon M. et al. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. J. Neurobiol. 2006; 66: 552–563.
- Pukhalsky A.L., Shmarina G.V., Alioshkin V.A., Sabelnikov A. HPA axis exhaustion and regulatory T cell accumulation in patients with a functional somatic syndrome: recent view on the problem of Gulf War veterans. J. Neuroimmunol. 2008; 196 (1–2): 133–138.
- Wekerle H., Sun D.M. Fragile privileges: autoimmunity in brain and eye. Acta Pharmacol. Sin. 2010; 31: 1141–1148.
- Neumann H., Boucraut J., Hahnel C. et al. Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur. J. Neurosci. 1996; 8: 2582–2590.
- Neumann H., Misgeld T., Matsumuro K., Wekerle H. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc. Natl. Acad. Sci. USA. 1998; 95: 5779–5784.
- Spalding K.L., Bergmann O., Alkass K. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013; 153 (6): 1219–1227.
- Ziv Y., Schwartz M. Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav. Immun. 2008; 22: 167–176.
- Pette M., Fujita K., Kitze B. et al. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology. 1990; 40: 1770–1776.
- Loewenbrueck K.F., Tigno-Aranjuez J.T., Boehm B.O. et al. Th1 responses to beta-amyloid in young humans convert to regulatory IL-10 responses in Down syndrome and Alzheimer’s disease. Neurobiol. Aging. 2010; 31: 1732–1742.
- Derecki N.C., Privman E., Kipnis J. Rett syndrome and other autism spectrum disorders--brain diseases of immune malfunction? Mol. Psychiatry. 2010; 15: 355–363.
- Palumbo M.L., Canzobre M.C., Pascuan C.G. et al. Stress induced cognitive deficit is differentially modulated in BALB/c and C57Bl/6 mice: correlation with Th1/Th2 balance after stress exposure. Neuroimmunology. 2010; 218: 12–20.
- Miyazaki T., Ishikawa T., Nakata A. et al. Association between perceived social support and Th1 dominance. Biol. Psychol. 2005; 70: 30–37.
- Suzuki T., Suzuki N., Engleman E.G. et al. Low serum levels of dehydroepiandrosterone may cause deficient IL-2 production by lymphocytes in patients with systemic lupus erythematosus (SLE). Clin. Exp. Immunol. 1995; 99: 251–255.
- Setoguchi R., Hori,S., Takahashi T., Sakaguchi S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 2005; 201: 723–735.
- Darrasse-Jeze G., Deroubaix S., Mouquet H. et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med. 2009; 206: 1853–1862.
- Tesar B.M., Du W., Shirali A.C., Walker W.E. et al. Aging augments IL-17 T-cell alloimmune responses. Am. J. Transplant. 2008; 9: 54–63.
- Wuest T.Y., Willette-Brown J., Durum S.K., Hurwitz A.A. The influence of IL-2 family cytokines on activation and function of naturally occurring regulatory T cells. J. Leukoc. Biol. 2008; 84: 973–980.
- Godbout J.P., Moreau M., Lestage J. Aging exacerbates depressivelike behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology. 2008; 33: 2341–2351.
- Mooradian A.D. Effect of aging on the blood-brain barrier. Neurobiol Aging. 1988; 9: 31–39.
- Morita T., Mizutani Y., Sawada M., Shimada A. Immunohistochemical and ultrastructural findings related to the blood--brain barrier in the blood vessels of the cerebral white matter in aged dogs. J. Comp. Pathol. 2005; 133: 14–22.
- Stichel C.C., Luebbert H. Inflammatory processes in the aging mouse brain: participation of dendritic cells and T-cells. Neurobiol. Aging. 2007; 28: 1507–1521.
- Kaunzner U.W., Miller M.M., Gottfried-Blackmore A. et al. Accumulation of resident and peripheral dendritic cells in the aging CNS. Neurobiol. Aging. 2012; 33: 681–693.
- Pukhalsky A.L., Toptygina A.P. Genetic control of interleukin-2 production in inbred mice. Biull. Eksp. Biol. Med. 1989; 108 (9): 311–313.
- Yates J., Rovis F., Mitchell P. et al. The maintenance human CD4+CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int. Immunol. 2007; 19: 785–799.
- Passerini L., Allan S.E., Battaglia M. et al. STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+. Int. Immunol. 2008; 20: 421–
- Cohen A.C., Nadeau K.C., Tu W. et al. Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J. Immunol. 2006; 177: 2770– 2774.
- Chen X., Oppenheim J.J., Howard O.M. BALB/c mice have more CD4+CD25+ T regulatory cells and show greater susceptibility to suppression of their CD4+CD25- responder T cells than C57BL/6 mice. J. Leukoc. Biol. 2005; 78: 114–121.
- Roque S., Nobrega C., Appelberg R., Correia-Neves M. IL-10 underlies distinct susceptibility of BALB/c and C57BL/6 mice to Mycobacterium avium infection and influences efficacy of antibiotic therapy. J. Immunol. 2007; 178: 8028–8035.
- Pukhalsky A., Shmarina G., Alioshkin V. The Number of Regulatory T Cells: Pursuit of the Golden Mean. In: Regulatory T Cells. Ren S. Hayashi (ed.). New York, Nova Science Publishers Inc., 2010. pp. 261–268.
- Tagawa N., Sugimoto Y., Yamada J., Kobayashi Y. Strain differences of neurosteroid levels in mouse brain. Steroids. 2006; 71: 776– 784.
- Xie T., Rowen L., Aguado B. et al. Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res. 2003; 13: 2621–2636.
- Locksley R.M., Killeen N., Lenardo M.J. The TNF and TNF
- receptor superfamilies: integrating mammalian biology. Cell. 2001; 104: 487–501.
- Elewaut D., Ware C.F. The unconventional role of LT alpha beta in T cell differentiation. Trends Immunol 2007; 28: 169–175.
- Beste C., Baune B.T., Falkenstein M., Konrad C. Variations in the TNF-α gene (TNF-α -308G→A) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 2010; 104: 2523–2531.
- Beste C., Gunturkun O., Baune B.T. et al. Double dissociated effects of the functional TNF-α -308G/A polymorphism on processes of cognitive control. Neuropsychologia. 2011; 49: 196–202.
- Pukhalsky A.L., Shmarina G.V., Kapustin I.V. et al. Genetic heterogeneity of heat shock protein synthesis as a factor determining the resistance to stressors in mammalia. Cell & Tissue Biol. 2011; 5 (1): 22–28.
- Pukhalsky A.L., Toptygina A.P., Viktorov V.V. Pharmacokinetics of alkylating metabolites of cyclophosphamide in different strains of mice. Int. J. Immunopharmacol. 1990; 12: 217–223.
- Zhang X., Beaulieu J.M., Sotnikova T.D. et al. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science. 2004; 305: 217.