ЛЕЧЕНИЕ ВИЧ-ИНФЕКЦИИ С ПОМОЩЬЮ ГЕННОЙ ТЕРАПИИ

Обложка


Цитировать

Полный текст

Аннотация

Современные методы лечения ВИЧ-инфекции позволяют сдерживать скорость развития заболевания, но не приводят к его излечению. Антиретровирусная терапия является пожизненной, дорогостоящей и сопровождается накоплением побочных эффектов. Последние достижения науки позволили предложить принципиально новый подход к лечению ВИЧ-инфекции — генную терапию. Настоящая публикация посвящена одному из направлений генной терапии ВИЧ, которое получило название «внутриклеточная иммунизация». В основе этого направления лежит идея введения антивирусных генов в чувствительные к ВИЧ клетки. В статье рассмотрены механизмы действия различных антивирусных генетических агентов, обсуждаются вопросы, связанные с выбором клеток-мишеней и способом доставки терапевтических генов. Представлены результаты клинических испытаний некоторых генотерапевтических препаратов для лечения ВИЧ-инфекции.

 

Об авторах

Д. В. Глазкова

ФГБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора, Москва

Автор, ответственный за переписку.
Email: glazkova@pcr.ru
кандидат биологических наук, научный сотрудник отдела молекулярной диагностики и эпидемиологии ФБУН ЦНИИ эпидемиологии Роспотребнадзора Адрес: 111123, Москва, ул. Новогиреевская, 3А Россия

Е. В. Богословская

ФГБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора, Москва

Email: lenabo@pcr.ru
кандидат медицинских наук, старший научный сотрудник отдела молекулярной диагностики и эпидемиологии ФБУН ЦНИИ эпидемиологии Роспотребнадзора Адрес: 111123, Москва, ул. Новогиреевская, д. 3А E-mail: lenabo@pcr.ru Тел./ факс: (495) 305-54-23 Россия

М. Л. Маркелов

ФГБУ «Институт медицины труда» РАМН, Москва

Email: markelov@pcr.ru
кандидат биологических наук, старший научный сотрудник лаборатории постге- номных технологий Института медицины труда РАМН Адрес: 105275, Москва, проспект Буденного, 31 Россия

Г. А. Шипулин

ФГБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора, Москва

Email: german@pcr.ru
кандидат медицинских наук, заведующий отделом молекулярной диагностики и эпидемиологии ФБУН ЦНИИ эпидемиологии Роспотребнадзора Адрес: 111123, Москва, ул. Новогиреевская, 3А Россия

В. В. Покровский

ФГБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора, Москва

Email: info@pcr.ru
академик РАМН, заместитель директора ФБУН ЦНИИ эпидемиологии Роспотребнадзора по научной работе Адрес: 111123, Москва, ул. Новогиреевская, 3А Тел.: (495) 974-96-46, факс: (495) 305-54-23 Россия

Список литературы

  1. Baltimore D. Gene therapy. Intracellular immunization. Nature. 1988; 335(6189):395–396.
  2. Engels B, Uckert W. Redirecting T lymphocyte specificity by T cell receptor gene transfer- a new era for immunotherapy. Mol. Aspects Med. 2007; 28(1):115–142.
  3. Puls R.L., Emery S. Therapeutic vaccination against HIV: current progress and future possibilities. Clin. Sci (Lond). 2006; 110(1):59–71.
  4. June C.H., Blazar B.R., Riley J.L. Engineering lymphocyte subsets: tools, trials and tribulations. Nat. Rev. Immunol. 2009; 9(10):704–716
  5. 5.Levine B.L., Humeau L.M., Boyer J. et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. USA. 2006; 103(46):17372–17377.
  6. van Lunzen J., Glaunsinger T., Stahmer I. et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol. Ther. 2007; 15(5):1024–1033.
  7. Macpherson J.L., Boyd M.P., Arndt A.J. et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J. Gene Med. 2005; 7(5): 552–564.
  8. Payne K.J., Crooks G.M. Immune-cell lineage commitment: translation from mice to humans. Immunity. 2007; 26(6): 674–677.
  9. Kambal A., Mitchell G., Cary W. et al. Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell-derived induced pluripotent stem cells. Mol. Ther. 2011; 19(3): 584–593.
  10. Park I.H., Zhao R., West J.A. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008; 451(7175): 141–146.
  11. Rosenberg S.A., Aebersold P., Cornetta K. et al. Gene transfer into humans — immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 1990; 323(9): 570–578.
  12. Pluta K., Kacprzak M.M. Use of HIV as a gene transfer vector. Acta Biochim. Pol. 2009; 56(4): 531–595.
  13. Marathe J.G., Wooley D.P. Is gene therapy a good therapeutic approach for HIV-positive patients? Genet. Vaccines Ther. 2007; 5: 5.
  14. Michienzi A., Li S., Zaia J.A., Rossi J.J. A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc. Natl. Acad. Sci. USA. 2002; 99(22): 14047–14052.
  15. Mhashilkar A.M., LaVecchio J., Eberhardt B. et al. Inhibition of human immunodeficiency virus type 1 replication in vitro in acutely and persistently infected human CD4+ mononuclear cells expressing murine and humanized anti-human immunodeficiency virus type 1 Tat single-chain variable fragment intrabodies. Hum. Gene Ther. 1999; 10(9): 1453–1467.
  16. Lamothe B., Joshi S. Current developments and future prospects for HIV gene therapy using interfering RNA-based strategies. Front. Biosci. 2000; 5: 527–555.
  17. Castanotto D., Li J.R., Michienzi A. et al. Intracellular ribozyme applications. Biochem. Soc. Trans. 2002; 30(Pt. 6): 1140–1145.
  18. Amado R.G., Mitsuyasu R.T., Rosenblatt J.D. et al. Anti–human immunodeficiency virus hematopoietic progenitor cell–delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1–infected patients. Hum. Gene Ther. 2004; 15: 251–262.
  19. Lee N.S., Rossi J.J. Control of HIV-1 replication by RNA interference. Virus Res. 2004; 102(1): 53–58.
  20. ter Brake O., 't Hooft K., Liu Y.P. et al. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol. Ther. 2008; 16(3): 557–564.
  21. Aagaard L.A., Zhang J., von Eije K.J. et al. Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther. 2008; 15(23): 1536–1549.
  22. Lapidot T., Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immunedeficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 2002; 16: 1992–2003.
  23. O'Brien S.J., Moore J.P. The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol. Rev. 2000; 177: 99–111.
  24. Biti R., French R., Young J. et al. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nature Medicine.1997; 3: 252–253.
  25. Allers K., Hütter G., Hofmann J. et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood. 2011; 117(10): 2791–2799.
  26. Swan C.H., Torbett B.E. Can gene delivery close the door to HIV-1 entry after escape? J. Med. Primatol. 2006; 35: 236–247.
  27. Feng Y., Leavitt M., Tritz R. et al. Inhibition of CCR5-dependent HIV-1 infection by hairpin ribozyme gene therapy against CC-chemokine receptor 5. Virology. 2000; 276(2): 271–278.
  28. Cagnon L., Rossi J.J. Downregulation of the CCR5 beta-chemokine receptor and inhibition of HIV-1 infection by stable VA1-ribozyme chimeric transcripts. Antisense Nucleic Acid Drug Dev. 2000; 10(4): 251–261.
  29. Swan C.H., Bühler B., Steinberger P. et al. T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Ther. 2006; 13(20): 1480–1492.
  30. Anderson J.S., Javien J., Nolta J.A., Bauer G. Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5 alpha protein, a CCR5 shRNA, and a TAR decoy. Mol. Ther. 2009; 17(12): 2103–2114.
  31. Butticaz C., Ciuffi A., Muñoz M. et al. Protection from HIV-1 infection of primary CD4 T cells by CCR5 silencing is effective for the full spectrum of CCR5 expression. Antivir. Ther. 2003; 8(5): 373–377.
  32. Kim S.S., Peer D., Kumar P. et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol. Ther. 2010; 18(2): 370–376.
  33. Shimizu S., Hong P., Arumugam B. et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood. 2010; 115(8): 1534–1544.
  34. Grimm D., Wang L., Lee J.S. et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J. Clin. Invest. 2010; 120(9): 3106–3119.
  35. Jackson A.L., Linsley P.S. Noise amidst the silence: off-target effects of siRNAs? Trends Genet. 2004; 20(11): 521–524.
  36. Silva J.M., Li M.Z., Chang K. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 2005; 37(11): 1281–1288.
  37. Boden D., Pusch O., Silbermann R. et al. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res. 2004; 32(3): 1154–1158.
  38. Liu Y.P., Haasnoot J., ter Brake O. et al. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res. 2008; 36(9): 2811–2824.
  39. Perez E.E., Wang J., Miller J.C. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 2008; 26(7): 808–816.
  40. Holt N., Wang J., Kim K. et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 2010; 28(8): 839–847.
  41. Lalezari J.P., DeJesus E., Northfelt D.W. et al. A controlled phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in nonnucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir. Ther. 2003; 8: 279–287.
  42. Egelhofer M., Brandenburg G., Martinius H. et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J. Virol. 2004; 78: 568–575.
  43. Strebel K., Luban J., Jeang K.T. Human cellular restriction factors that target HIV-1 replication. BMC Med. 2009; 7: 48.
  44. Li Y., Li X., Stremlau M. et al. Removal of arginine 332 allows human TRIM5б to bind human immunodeficiency virus capsids and to restrict infection. J. Virol. 2006; 80: 6738–6744.
  45. Anderson J., Akkina R. Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue. Hum. Gene Ther. 2008; 19(3): 217–228.
  46. Sayah D.M., Sokolskaja E., Berthoux L., Luban J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature. 2004; 430(6999): 569–573.
  47. Neagu M.R., Ziegler P., Pertel T. et al. Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components. J. Clin. Invest. 2009; 119(10): 3035–3047.
  48. Bogerd H.P., Doehle B.P., Wiegand H.L., Cullen B.R. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA. 2004; 101(11): 3770–3774.
  49. Xu H., Svarovskaia E.S., Barr R. et al. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. USA. 2004; 101(15): 5652–5657.
  50. Gupta R.K., Hué S., Schaller T. et al. Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion. PLoS Pathog. 2009; 5(5).
  51. Burdick R., Smith J.L., Chaipan C. et al. P body-associated protein Mov10 inhibits HIV-1 replication at multiple stages. J. Virol. 2010; 84(19): 10241–102453.
  52. Lee K., Ambrose Z., Martin T.D. et al. Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe. 2010; 7(3): 221–233.
  53. DiGiusto D.L., Krishnan A., Li L. et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci. Transl. Med. 2010; 2(36).
  54. Kiem H.P., Wu R.A., Sun G. et al. Foamy combinatorial anti-HIV vectors with MGMTP140K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo. Gene Ther. 2010; 17(1): 37–49.
  55. Woffendin C., Ranga U., Yang Z. et al: Expression of a protective gene-prolongs survival of T cells in human immunodeficiency virus-infected patients. Proc. Natl. Acad. Sci. USA. 1996; 93(7): 2889–2894.
  56. Available from: http://www.wiley.com/legacy/wileychi/genmed/clinical/
  57. van Lunzen J., Glaunsinger T., Stahmer I. et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol. Ther. 2007; 15: 1024–1033.
  58. Mitsuyasu R.T., Merigan T.C., Carr A. et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat. Med. 2009; 15(3): 285–292.
  59. Tebas P., Stein D., Zifchak et al. Prolonged Control of Viremia After Transfer of Autologous CD4 T Cells Genetically Modified with a Lentiviral Vector Expressing Long Antisense to HIV env (VRX496). Abstract. 17th Conference on Retrovirses and Opportunistic Infection, February 2010.
  60. Lalezari J. et al. Successful and persistent engraftment of ZFN-M-R5-D autologous CD4 T Cells (SB-728-T) in aviremic HIV-infected subjects on HAART. CROI 2011. Abstract 46.
  61. Hinrichs C.S., Borman Z.A., Gattinoni L. et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood. 2011; 117(3): 808–814.
  62. Kaneko S., Mastaglio S., Bondanza A. et al. IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T-lymphocytes. Blood 2009; 113(5): 1006–1015.
  63. Berry L.J., Moeller M., Darcy P.K. Adoptive immunotherapy for cancer: the next generation of gene-engineered immune cells. Tissue Antigens. 2009; 74(4): 277–289.
  64. van Baarle D., Tsegaye A., Miedema F., Akbar A. Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol Lett. 2005; 97(1): 19–29.
  65. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000; 288(5466): 669–672.
  66. Aiuti A., Slavin S., Aker M. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002; 296: 2410–2413.
  67. Czechowicz A., Kraft D., Weissman I.L., Bhattacharya D. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science. 2007; 318(5854): 1296–1299.
  68. Glazkova D., Vetchinova A., Zhogina Y. et al. Stable reduction of CCR5 by lentiviral vector-expressed artificial microRNAs. ESGCT and BSGT collaborative Congress. Brighton UK, 2011.
  69. Glazkova D.V., Vetchinova A.S., Bogoslovskaya E.V. et al. Geneticheskie konstruktsii dlya antiVICh-terapii. Patent na izobretenie RF № 2426788, 01 marta 2010 g. [Genetic constructs for anti-HIV therapy. The patent for the invention of the Russian Federation № 2426788, March 1, 2010].

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2012



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах