ИЗМЕНЕНИЯ СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ПЛАСТИЧНОСТИ ГОЛОВНОГО МОЗГА, ИНДУЦИРОВАННЫЕ ОБОГАЩЕННОЙ СРЕДОЙ
- Авторы: Комлева Ю.К.1, Салмина А.Б.1, Прокопенко С.В.1, Шестакова Л.А.1, Петрова М.М.1, Малиновская Н.А.1, Лопатина О.Л.1
-
Учреждения:
- Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, Российская Федерация
- Выпуск: Том 68, № 6 (2013)
- Страницы: 39-48
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ ПАТОФИЗИОЛОГИИ
- Дата публикации:
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/177
- DOI: https://doi.org/10.15690/vramn.v68i6.672
- ID: 177
Цитировать
Полный текст
Аннотация
В обзоре литературы представлены данные о структурных и функциональных механизмах пластичности головного мозга при воздействии обогащенной среды. Обогащенная среда содержит социальные и несоциальные стимулы, воздействующие на различные аспекты развития и функционирования головного мозга. Особое внимание посвящено моделированию обогащенной среды в эксперименте. Поскольку формирование обогащенной среды подразумевает действие социальных стимулов, новых объектов, поэтому воспроизведение обогащенной среды у животных может считаться адекватной моделью для изучения изменений в структуре мозга и функций, которые происходят при обучении или приобретении сложных профессиональных навыков у человека. Описаны теории влияния обогащенной среды на нейрогенез, нейрон-глиальные взаимоотношения, на поврежденный мозг и возможности использования обогащенной среды при нейрореабилитации. Молекулярные механизмы синаптической передачи, имеющей корреляцию с эффективностью когнитивных функций, являются одной из возможных мишеней действия факторов окружающей среды на мозг в физиологических и патофизиологических условиях. Несмотря на значительный прогресс, достигнутый в понимании механизмов, которые опосредуют эффекты обогащенной среды, в нейрохимии и нейробиологии этого феномена остается много нерешенных проблем. В целом, опыт-индуцированная нейропластичность представляет собой уникальный механизм развития и восстановления головного мозга, применение которого открывает новые перспективы в нейрофармакологии и нейрореабилитации.
Об авторах
Ю. К. Комлева
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, Российская Федерация
Автор, ответственный за переписку.
Email: yuliakomleva@mail.ru
PhD student, Department of Biochemistry, with Courses of Medical, Pharmaceutical and Toxicological Chemistry Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky Address: 660022, Krasnoyarsk, Partizana Zheleznyaka St., 1; tel.: (391) 228-07-69 Россия
А. Б. Салмина
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, Российская Федерация
Email: allasalmina@mail.ru
PhD, Professor, Head of Department of Biochemistry, with Courses of Medical, Pharmaceutical and Toxicological Chemistry, Vice Rector for Innovative Development and International Activities, Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky Address: 660022, Krasnoyarsk, Partizana Zheleznyaka St., 1; tel.: (391) 2280769 Россия
С. В. Прокопенко
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, Российская Федерация
Email: s.v.proc.58@mail.ru
PhD, Professor, Head of the Department of Nervous Diseases, Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky Address: 660022, Krasnoyarsk, Partizana Zheleznyaka St., 1; tel.: (391) 274-31-74 Россия
Л. А. Шестакова
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, Российская Федерация
Email: Patholog-lan@yandex.ru
PhD, Assistant Professor, Head of the Department of Pathological Anatomy named after prof. P.G. Podzolkova, Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky Address: 660022, Krasnoyarsk, Partizana Zheleznyaka St., 1; tel.: (391) 220-14-25 Россия
М. М. Петрова
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, Российская Федерация
Email: stk99@yandex.ru
PhD, Professor, Head of the Polyclinic Therapy Department, Provost for Research, Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky Address: 660022, Krasnoyarsk, Partizana Zheleznyaka St., 1; tel.: (391) 220-06-28 Россия
Н. А. Малиновская
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, Российская Федерация
Email: reg.kgmu@gmail.com
PhD, Research Worker, Scientific Research Institute of Molecular Medicine and Pathobiochemistry, Assistant Professor, Department of Biochemistry with Courses of the Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky Address: 660022, Krasnoyarsk, Partizana Zheleznyaka St., 1; tel.: (391) 228-07-69 Россия
О. Л. Лопатина
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого, Российская Федерация
Email: ol.lopatina@gmail.com
PhD, Senior Lecturer, Department of Biochemistry with Courses of the Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky Address: 660022, Krasnoyarsk, Partizana Zheleznyaka St., 1; tel.: (391) 228-07-69 Россия
Список литературы
- Mayeux R. Epidemiology of neurodegeneration. Ann. Rev. Neurosci. 2003; 26: 81–104.
- Nithianantharajah J. Hannan A.J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006; 7: 697–709.
- Nilsson M., Milos P. Enriched environment and astrocytes in central nervous system regeneration. J. Rehabil. Med. 2007; 39: 345–352.
- Hummel F.C., Cohen L.G. Drivers of brain plasticity. Curr. Opin. Neurol. 2005; 18: 667–674.
- Pascual-Leone A., Amedi A., Fregni F., Merabet L.B. The plastic human brain cortex. Ann. Rev. Neurosci. 2005; 28: 377–401.
- Ward N.S., Cohen L.G. Mechanisms underlying recovery of motor function after stroke. Arch. Neurol. 2004; 61: 1844–1848.
- Hebb D.O. The effects of early experience on problem-solving at maturity. Am. Psychol. 1947; 2: 306–307.
- Will B., Galani R., Kelche C., Rosenzweig M.R. Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990–2002). Prog. Neurobiol. 2004; 72: 167–182.
- Hubel D.N., Wiesel T.N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 1970; 206: 419–436.
- Rosenzweig M.R., Bennett E.L. Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev. Psychobiol. 1969; 2: 87–95.
- Bennett J.C., McRae P.A., Levy L.J., Frick K.M. Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol. Learn. Mem. 2006; 85: 139–152.
- Altman J., Das, G.D. Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature. 1964; 204: 1161–1163.
- Kempermann G., Gast D., Gage F.H. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann. Neurol. 2002; 52: 135–143.
- Walsh R.N., Cummins, R.A. Mechanisms mediating the production of environmentally induced brain changes. Psychol. Bull. 1975; 82: 986–1000.
- van Praag H., Kempermann G., Gage F.H. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 2000; 1: 191–98.
- Jankowsky J.L., Melnikova Т., Fadale D.J., Xu G.M., Slunt H.H., Gonzales V., Linda H. Younkin L.H., Steven G., Younkin S.G., Borchelt D.R., Savonenko A.V. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J. Neurosci. 2005; 25: 5217–5224.
- Friske J.E., Gammie S.C. Environmental enrichment alters plus maze, but not maternal defense performance in mice. Physiol. Behav. 2005; 85: 187–194.
- Lee E.H., Hsu W.L., Ma Y.L., Lee P.J., Chao C.C. Enrichment enhances the expression of sgk, a glucocorticoid-induced gene, and facilitates spatial learning through glutamate AMPA receptor mediation. Eur. J. Neurosci. 2003; 18: 2842–2852.
- Meshi D, Drew M.R., Saxe M., Ansorge M.S.; David D., Santarelli L., Malapani C., Moore H., Hen R. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nature Neurosci. 2006; 9: 729–731.
- Silva C.F., Duarte F.S., Lima T.C., de Oliveira C.L. Effects of social isolation and enriched environment on behavior of adult Swiss mice do not require hippocampal neurogenesis. Behav. Brain Res. 2011; 225 (1): 85–90.
- Johansson B.B., Belichenko P.V. Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and post-ischemic rat brain. J. Cereb. Blood Flow Metab. 2002; 22: 89–96.
- Leggio M.G. Mandolesi L., Federico F., Spirito F., Ricci B., Gelfo F., Petrosini L. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav. Brain Res. 2005; 163: 78–90.
- Rampon C., Jiang C.H., Dong H., Tang Y.P., Lockhart D.J., Schultz P.G., Tsien J.Z., Hu Y. Effects of environmental enrichment on gene expression in the brain. Proc. Natl. Acad. Sci. USA. 2000; 97: 12880–12884.
- Rizzi S., Bianchi P., Guidi S., Ciani E., Bartesaghi R. Impact of environmental enrichment on neurogenesis in the dentate gyrus during the early postnatal period. Brain Res. 2011; 1415: 23–33.
- Artola A. von Frijtag J.C., Fermont P.C., Gispen W.H., Schrama L.H., Kamal A., Spruijt B.M. Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur. J. Neurosci. 2006; 23: 261–272.
- Foster T.C., Dumas T.C. Mechanism for increased hippocampal synaptic strength following differential experience. J. Neurophysiol. 2001; 85: 1377–1383.
- Gobbo O.L, O’Mara S.M. Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav. Brain Res. 2004; 152: 231–241.
- Lambert T.J., Fernandez S.M., Frick K.M. Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiol. Learn. Mem. 2005; 83: 206–216.
- Williamson L.L., Chao A., Bilbo S.D. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain Behav. Immun. 2012; 26 (3): 500–510.
- Decimo I., Bifari F., Krampera M., Fumagalli G. Neural stem cell niches in health and diseases. Curr. Pharm. Des. 2012; 18 (13): 1755–1783.
- Mustroph M.L., Chen S., Desai S.C., Cay E.B., DeYoung E.K., Rhodes J.S. Aerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57BL/6J mice. Neuroscience. 2012 6; 219: 62–71.
- Schaefers A.T. Rearing conditions and domestication background determine regulation of hippocampal cell proliferation and survival in adulthood - laboratory CD1 and C57Bl/6 mice versus wild house mice. Neuroscience. 2013; 3 (228): 120–127.
- Greenough W.T., Hwang H.M., Gorman C. Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments. Proc. Natl Acad. Sci. USA. 1985; 82: 4549–4552.
- Ickes B.R., Pham T.M., Sanders L.A., Albeck D.S., Mohammed A.H. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp. Neurol. 2000; 164: 45–52.
- Tanti A., Rainer Q., Minier F., Surget A., Belzung C. Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology. 2012; 63 (3): 374–384.
- Markham J.A., Greenough W.T. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 2004; 1: 351–363.
- Ullian E.M., Sapperstein S.K., Christopherson K.S., Barres B.A. Control of synapse number by glia. Science. 2001; 291: 657–661.
- Halassa M.M., Fellin T., Haydon P.G. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med. 2007; 13: 54–63.
- Redolat R., Mesa-Gresa P. Potential benefits and limitations of enriched environments and cognitive activity on age-related behavioural decline. Curr. Top Behav. Neurosci. 2012; 10: 293–316.
- Yao Z.H., Zhang J.J., Xie X.F. Enriched environment prevents cognitive impairment and tau hyperphosphorylation after chronic cerebral hypoperfusion. Curr. Neurovasc. Res. 2012; 9 (3): 176–184.
- Binder L.I., Guillozet-Bongaarts A.L., Garcia-Sierra F., Berry R.W. Tau, tangles, and Alzheimer’s disease. Biochem. Biophys. Acta. 2005; 1739: 216–223.
- Spires T.L., Hyman B.T. Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx. 2005; 2: 423–437.
- Coleman P.D., Yao P.J. Synaptic slaughter in Alzheimer’s disease. Neurobiol. Aging. 2003; 24: 1023–1027.
- Laurin D., Verreault R., Lindsay J., MacPherson K., Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 2001; 58: 498–504.
- Valenzuela M.J., Sachdev P. Brain reserve and dementia: a systematic review. Psychol. Med. 2006; 36: 441–454.
- Wilson R.S. Bennett D.A, Bienias J.L., Aggarwal N.T., Mendes De Leon C.F., Morris M.C., Schneider J.A., Evans D.A. Cognitive activity and incident AD in a population-based sample of older persons. Neurology. 2002; 59: 1910–1914.
- Levi O., Jongen-Relo A.L., Feldon J., Roses A.D., Michaelson, D.M. ApoE4 impairs hippocampal plasticity isoform-specifically and blocks the environmental stimulation of synaptogenesis and memory. Neurobiol. Dis. 2003; 13: 273–282.
- Kamenetz F., Tomita T., Hsieh H., Seabrook G., Borchelt D., Iwatsubo T., Sisodia S., Malinow R. APP processing and synaptic function. Neuron. 2003; 37: 925–937.
- Walsh D.M, Klyubin I, Fadeeva JV, Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002; 416: 535–539.
- Fitzjohn S.M., Morton R.A., Kuenzi F., Rosahl T.W., Shearman M., Lewis H., Smith D., Reynolds D.S., Davies C.H., Collingridge G.L., Seabrook G.R. Age-related impairment of synaptic transmission but normal long-term potentiation in transgenic mice that overexpress the human APP695SWE mutant form of amyloid precursor protein. J. Neurosci. 2001; 21: 4691–4698.
- Prihar G., Verkkoniem A., Perez-Tur J, Crook R., Lincoln S., Houlden H., Somer M., Paetau A., Kalimo H., Grover A., Myllykangas L., Hutton M., Hardy J., Haltia M. Alzheimer disease PS-1 exon 9 deletion defined. Nat Med. 1999; 5: 1090.
- Lazarov O., Robinson J., Tang Y.P.,Hairston I.S., Korade-Mirnics Z., Lee V.M., Hersh L.B., Sapolsky R.M., Mirnics K., Sisodia S.S. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell. 2005; 120: 701–713.
- Sheng J.G., Price D.L., Koliatsos V.E. Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of A amyloidosis. J. Neurosci. 2002; 22: 9794–9799.
- Brandan E., Inestrosa N.C. Extracellular matrix components and amyloid in neuritic plaques of Alzheimer’s disease. Gen. Pharmacol. 1993; 24: 1063–1068.
- Meyer-Luehmann M., Stalder M., Herzig M.C., Kaeser S.A., Kohler E., Pfeifer M., Boncristiano S., Mathews P.M., Mercken M., Abramowski D., Staufenbiel M., Jucker M. Extracellular amyloid formation and associated pathology in neural grafts. Nat. Neurosci. 2003; 6: 370–377.
- Iwata H., Mizukami H., Shirotani K., Takaki Y., Muramatsu S., Lu B., Gerard N.P., Gerard C., Ozawa K., Saido T.C. Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain. J. Neurosci. 2004; 24: 991–998.
- Braun N., Sevigny J., Robson S.C., Enjyoji K., Guckelberger O., Hammer K., Di Virgilio F., Zimmermann H. Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculoture of the brain. Eur. J. Neurosci. 2000; 12: 4357–4366.
- Stein T.D., Johnson J.A. Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J. Neurosci. 2002; 22: 7380–7388.
- Karsten S.L., Geschwind D.H. Exercise your amyloid. Cell. 2005; 120: 572–574.
- Marx J. Preventing Alzheimer’s: a lifelong commitment? J. Neurosci. 2005; 309: 864–866.
- Arendash G.W. Garcia M.F., Costa D.A., Cracchiolo J.R., Wefes I.M., Potter H. Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable β-amyloid deposition. Neuroreport. 2004; 15: 1751–1754.
- Adlard P.A., Perreau V.M., Pop V., Cotman C.W. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J. Neurosci. 2005; 25: 4217–4221.
- Little D.M., Foxely S., Lazarov O. A preliminary study targeting neuronal pathways activated following environmental enrichment by resting state functional magnetic resonance imaging. J. Alzheimers Dis. 2012; 32 (1): 101–107.
- Feng R. Rampon C., Tang Y.P., Shrom D., Jin J., Kyin M., Sopher B., Miller M.W., Ware C.B., Martin G.M., Kim S.H., Langdon R.B., Sisodia S.S., Tsien J.Z. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron. 2001; 32: 911–926.
- Wen P.H., Hof P.R., Chen X., Gluck K., Austin G., Younkin S.G., Younkin L.H., DeGasperi R., Gama Sosa M.A., Robakis N.K., Haroutunian V., Elder G.A. The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp. Neurol. 2004; 188: 224–237.
- Beauquis J., Pavía P., Pomilio C., Vinuesa A., Podlutskaya N., Galvan V., Saravia F. Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer's disease. Exp. Neurol. 2013; 239: 28–37.
- Li S., Jin M, Zhang D., Yang T., Koeglsperger T., Fu H., Selkoe D.J. Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron. 2013; 6, 77 (5): 929–941.
- Horner P.J., Gage F.H. Regenerating the damaged nervous system. Nature. 2000; 407: 963–970.
- Laviola G., Hannan A.J., Macri S., Solinas M., Jaber M. Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol. Dis. 2008; 31: 159–168.