НАНОЧАСТИЦЫ КАК СИСТЕМЫ ТРАНСПОРТА ДЛЯ ПРОТИВОТУБЕРКУЛЕЗНЫХ ЛЕКАРСТВ

Обложка


Цитировать

Полный текст

Аннотация

Повышение частоты заболеваемости туберкулезом в последние годы стимулировало разработки новых противотуберкулезных препаратов, а также способов повышения эффективности уже имеющихся средств с использованием различных систем транспорта.  Это обусловлено побочными реакциями и низкой биодоступностью одного из наиболее эффективных противотуберкулезных препаратов 1-го ряда рифампицина. В обзоре рассмотрены различные системы транспорта противотуберкулезных препаратов на основе полимеров, липосом, липидных наночастиц, дендримеров, циклодекстринов, наноэмульсий. Приведены данные по влиянию включения лекарств (чаще всего — рифампицина) в наночастицы на их фармакокинетику и противотуберкулезную активность. Наибольшее число работ посвящено полимерным наночастицам, вводимым перорально: показано увеличение времени циркуляции и активности включенных противотуберкулезных препаратов. Более высокая эффективность наблюдалась при использовании твердых липидных наночастиц. Для ингаляционного или инъекционного введения исследовали в большей степени влияние липосомальных форм, также показавших положительные результаты. Отмечена перспективность встраивания противотуберкулезных препаратов в наночастицы на основе фосфолипидов, и приведены собственные данные авторов о повышении эффективности рифампицина при встраивании в такие наночастицы.

 

Об авторах

М. А. Санжаков

Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН, Москва, Российская Федерация

Автор, ответственный за переписку.
Email: iamaks@rambler.ru
research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (495) 708-38-07 Россия

О. М. Ипатова

Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН, Москва, Российская Федерация

Email: ipatova@ibmc.msk.ru
PhD, Head of Department of Nanomedicines, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (499) 246-40-08 Россия

Т. И. Торховская

Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН, Москва, Российская Федерация

Email: torti@mail.ru
PhD, leading research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (499) 248-40-08, (499) 246-43-56 Россия

В. Н. Прозоровский

Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН, Москва, Российская Федерация

Email: vladimir.prozorovskiy@ibmc.msk.ru
PhD, chief research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (495) 708-38-07 Россия

Е. Г. Тихонова

Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН, Москва, Российская Федерация

Email: elena.tikhonova@ibmc.msk.ru
MD, leading research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (499) 246-36-31 Россия

О. С. Дружиловская

Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН, Москва, Российская Федерация

Email: strekalova.oksana@ibmc.msk.ru
MD, research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (499) 246-36-31 Россия

Н. В. Медведева

Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича РАМН, Москва, Российская Федерация

Email: nmedvedeva@ibmc.msk.ru
MD, leading research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (495) 708-38-07 Россия

Список литературы

  1. Doane T.L., Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 2012; 41 (7): 2885–2911.
  2. Dube D., Agrawal G.P., Vyas S.P. Tuberculosis: from molecular pathogenesis to effective drug carrier design. Drug Discov. Today. 2012; 17 (13–14): 760–773.
  3. Available at: http://altermed.com.ua/comment_6359.html?id_cot=201&id_kniga=201
  4. du Toit L.C., Pillay V., Danckwerts M.P. Tuberculosis chemotherapy: current drug delivery approaches. Respir. Res. 2006; 7: 118.
  5. Kaur D., Guerin M.E., Škovierová H., Brennan P.J.,.Jackson M. Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv. Appl. Microbiol. 2009; 69: 23–78.
  6. Colijn C., Cohen T., Ganesh A., Murray M. Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy. PLoS One. 2011; 6(3): 18327.
  7. Agrawal S., Singh I., Kaur K.J., Bhade S.R., Kaul C.L., Panchagnula R. . Bioequivalence assessment of rifampicin, isoniazid and pyrazinamide in a fixed dose combination of rifampicin, isoniazid, pyrazinamide and ethambutol vs. separate formulations. Int. J. Clin. Pharmacol. Ther. 2002; 40 (10): 474–481.
  8. Bhandari R., Kaur I.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int .J. Pharm. 2013; 441: 202–212.
  9. Sosnik A., Carcaboso A.M., Glisoni R.J., Moretton M.A., Chiappetta D.A. . New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev. 2010; 62 (4–5): 547–559.
  10. Tomioka H., Namba K. Development of antituberculous drugs: current status and future prospects. Kekkaku. 2006; 81 (12): 753–774.
  11. Banyal S., Malik P., Tuli H.S., Mukherjee T.K. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr. Opin. Pulm .Med. 2013; [Epub ahead of print].
  12. Shegokar R., Al Shaal L., Mitri K. Present status of nanoparticle research for treatment of tuberculosis. J. Pharm. Pharmaceut. Sci. 2011; 14 (1): 100–116.
  13. Wasserman M., Beltrán R.M., Quintana F.O., Mendoza P.M, Orozco L.C., Rodriguez G. A simple technique for entrapping rifampicin and isoniazid into liposomes. Tubercle. 1986; 67 (2): 83–90.
  14. Minina A.S., Sorokoumova G.M., Selisheva A.A., Malikova N.M., Kalashnikova T.Yu., Shvets V.I. The incorporation of rifampicin into multilayer and monolayer vesicles. Biofizika = Biophysics. 2004; 49 (4): 674–679.
  15. Gürsoy A., Kut E., Ozkirimli S. Co-encapsulation of isoniazid and rifampicin in liposomes and characterization of liposomes by derivative spectroscopy. Int. J. Pharm. 2004; 271 (1–2): 115–123.
  16. Changsan N., Chan H.K., Separovic F., Srichana T. Physicochemical characterization and stability of rifampicin liposome powder formulations for inhalation. J. Pharm. Sci. 2009; 98 (2): 628–369.
  17. Zaru M., Sinico C., De Logu A., Caddeo C., Lai F., Manca M.L., Fadda A.M. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation. J. Liposome Res. 2009; 19 (1): 68–76.
  18. Chimote G., Banerjee R. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. J. Biomed. Mater. Res. A. 2009; 89 (2): 281–292.
  19. Chimote G, Banerjee R. Evaluation of antitubercular drug insertion into preformed dipalmitoyl-phosphatidylcholine monolayers. Colloids Surf. B. Biointerfaces. 2008; 62 (2): 258–264.
  20. Changsan N., Nilkaeo A., Pungrassami P., Srichana T. Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Мycobacterium bovis in alveolar macrophages. J. Drug Target. 2009; 17 (10): 751–762.
  21. Shu J.Y., Quan X.Y., Shu Y., Guang Y.P, Liu Y.C. Preparation, characterization, and pulmonary delivery of rifapentine liposomes modified by lauric diethanolamide. Yao Xue Xue Bao. 2006; 41 (8): 761–764.
  22. Pasquardini L., Lunelli L., Vanzetti L., Anderle M., Pederzolli C. Immobilization of cationic rifampicin-loaded liposomes on polystyrene for drug-delivery. Colloids Surf. B. Biointerfaces. 2008; 62 (2): 265–272.
  23. Barbassa L., Mamizuka E.M., Carmona-Ribeiro A.M. Supramolecular assemblies of rifampicin and cationic bilayers: preparation and micobactericidal activity. BMC Biotechnol. 2011; 11: 40.
  24. Roesler J., Hockertz S., Vogt B., Lohmann-Matthes M.L. Staphylococci surviving intracellularly in phagocytes from patients suffering from chronic granulomatous disease are killed in vitro by antibiotics encapsulated in liposomes. J. Clin. Invest. 1991; 88 (4): 1224–1229.
  25. Pinheiro M., Lúcio M., Lima J.L., Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (London). 2011; 6 (8): 1413–1428.
  26. Vyas S.P., Kannan M.E, Jain S. Mishra V., Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm. 2004; 269 (1): 37–49.
  27. Pandey R., Sharma S., Khuller G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinburgh). 2005; 85 (5–6): 415–420.
  28. Nimje N., Agarwal A., Saraogi G.K., Lariya N., Rai G., Agrawal H., Agrawal G.P. Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J. Drug. Target. 2009; 17: 777–787.
  29. Pandey R., Khuller G.K. Nanotechnology based drug delivery system(s) for the management of tuberculosis. Indian J. Exp. Biol. 2006; 44: 357–366.
  30. de Faria T.J., Roman M., de Souza N.M., De Vecchi R., de Assis J.V., dos Santos A.L., Bechtold I.H, Winter N., Soares M.J., Silva L.P., De Almeida M.V, Báfica A. An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrob. Agents Chemother. 2012; 56 (5): 2259–2567.
  31. Anisimova Y.V., Gelperina S.E., Peloquin C.A, Heifets I.B. Nanoparticles as antituberculosis drugs carriers: effect on activity against M. tuberculosis in human monocyte-derived macrophages. J. Nanoparticle Res. 2000; 2: 165–171.
  32. Jiang Z., Hao J., You Y. , Gu Q., Cao W., Deng X. Biodegradable thermogelling hydrogel of P(CL-GL)-PEG-P(CL-GL) triblock copolymer: degradation and drug release. J. Pharmaceut. Sci. 2009; 98: 2603–2610.
  33. Silva M., Ferreira E.I., Leite C.Q.F., Sato D.N. Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Trop. J. Pharm. Res. 2007; 6 (4): 815–824.
  34. D'Addio S.M., Baldassano S., Shi L. Adamson D.H., Bruzek M., Anthony J.E., Laskin D.L., Sinko P.J., Prud'homme R.K. Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers. J. Control Release. 2013; [Epub ahead of print].
  35. Kumar P.V., Asthana A., Dutta T., Jain N.K. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J. Drug Target. 2006; 14: 546–556.
  36. Patil J.S., Suresh S. Physicochemical characterization, in vitro release and permeation studies of rifampicin-cyclodextrin inclusion complexes. Indian J. Pharm. Sci. 2009; 71 (6): 638–643.
  37. Saikia N., Rajkhowa S., Deka R.C. Density functional and molecular docking studies towards investigating the role of single-wall carbon nanotubes for loading and delivery of pyrazinamide antitubercular drug. J. Comput. Aided Mol. 2013; [Epub ahead of print].
  38. Mehta S.K., Jindal N., Kaur G. Quantitative investigation, stability and in vitro release studies of anti-tuberculosis drugs in triton niosomes. Colloids Surf. B. Biointerfaces. 2011; 87 (1): 173–179.
  39. Ahmed M., Ramadan W., Rambhu D., Shakeel F. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie. 2008; 63: 806–811.
  40. Mehta S.K., Kaur G., Bhasin K.K Tween-embedded microemulsions-physicochemical and spectroscopic analysis for antitubercular drugs. AAPS Pharm. Sci. Tech. 2010; 11: 143–153.
  41. Sarfaraz M.D., Hiremath D., Chowdary K.P.R. Formulation and characterization of rifampicin microcapsules. Indian J. Pharm. Sci. 2010; 72 (1): 101–105.
  42. Hiremath P.S., Saha R.N. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations. Int. J. Pharm. 2008; 362 (1–2): 118–125.
  43. Pandey R., Sharma S., Khuller G.K. Chemotherapeutic efficacy of nanoparticle encapsulated antitubercular drugs. Drug Deliv. 2006; 13 (4): 287–294.
  44. Dutt M., Khuller G.K. Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in Poly (DL-lactide-co-glycolide) microparticles. J. Antimicrob. Chemother., 2001; 47 (6): 829–835.
  45. Johnson C.M., Pandey R., Sharma S. , Khuller G. K., Basaraba R.J., Orme I.M., Lenaerts A.J. Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2005; 49 (10): 4335–4338.
  46. Sharma A., Sharma S., Khuller G.K. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother. 2004; 54 (4): 761–766.
  47. Kumar G, Sharma S, Shafiq N., Pandhi P., Khuller G.K., Malhotra S., Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv. 2011; 18 (1): 65–73.
  48. Kisich K.O, Gelperina S.E, Higgins M.P , Wilson S, Shipulo E, Oganesyan E, Heifets L. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm. 2007; 345 (1–2): 154–162.
  49. Jia L., Wong H., Cerna C., Weitman S.D. Effect of nanonization on absorption of 301029: ex vivo and in vivo pharmacokinetic correlations. Pharm. Res. 2002; 19: 1091–1096.
  50. Ipatova O.M, Prozorovskiy V.N., Medvedeva N.V., Shironin A.V., Strekalova O.S., Ivanova N.D., Torkhovskaya T.I., Archakov A.I. Phospholipid nanoparticles as carriers for drug delivery. Materials of European Congress for Drug Discovery (MipTec). Basel. 2010. Abstr. 80.
  51. Ipatova O.M., Medvedeva N.V., Prozorovskii V.N., Sanzhakov M.A., Tikhonova E.G., Druzhilovskaya O.S., Minaev S.A., Kyurkchan P.A. Protivotuberkuleznaya kompozitsiya i sposob ee polucheniya [Antituberculous compounds and method of its preparation]. Patent na izobretenie № 2472512, Zayavka № 2011149543/15 [Patent for invention № 2472512, Application № 2011149543/15]. Мoscow, 2011.
  52. Zaru M., Manca M.L., Fadda A.M., Antimisiaris S.G. Chitosan-coated liposomes for delivery to lungs by nebulisation. Colloids Surf. B. Biointerfaces. 2009; 71 (1): 88–95.
  53. Chono S., Tanino T., Seki T., Morimoto K. Uptake of liposomes by rat alveolar macrophages: influence of size and surface mannose modification. J. Pharm. Pharmacol. 2007; 59 (1): 75–80.
  54. Pandey R., Sharma A., Zahoor A., Sharma S., Khuller G.K., Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother. 2003; 52: 981–986.
  55. Ohashi K., Kabasawa T., Ozeki T., Okada H. One-step preparation of rifampicin/ poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J. Control Release. 2009; 135 (1): 19–24.
  56. Ahmad Z., Sharma S., Khuller G.K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents. 2005; 26 (4): 298–303.
  57. Pandey R., Khuller G.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinburgh). 2005; 85 (4): 227–234.
  58. Orozco L.C., Quintana F.O., Beltran R.M., Moreno I., Wasserman M., Rodriguez G. The use of rifampin and isoniazid entrapped in liposomes for the treatment of murine tuberculosis. Tubercle. 1986; 67: 91–97.
  59. Saito H., Tomioka H. Therapeutic efficacy of liposomal entrapped rifampin against Mycobacterium avium complex infection induced in mice. Antimicrob. Agents Chemother. 1989; 33: 429–433.
  60. Deol P., Khuller G.K. Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochem. Biophys. Acta. 1997; 1334 (2–3): 161–172.
  61. Labana S., Pandey R., Sharma S., Khuller G.K. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int. J. Antimicrob. Agents. 2002; 20 (4): 301–304.
  62. El-Ridy M.S., Mostafa D.M., Shehab A., Nasr E.A, Abd El-Alim S. Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int. J. Pharm. 2007; 330: 82–88.
  63. Gaspar M.M., Cruz A., Penha A.F., Reymao J., Sousa A.C, Eleuterio C.V., Domingues S.A., Fraga A.G., Filho A.L, Cruz M.E., Pedrosa J. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int. J. Antimicr. Agents. 2008; 31: 37–45.
  64. Adams L.B., Sinha I., Franzblau S.G., Krahenbuhl J.L., Mehta R.T. Effective treatment of murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob. Agents Chemother. 1999; 43 (7): 1638–1643.
  65. Klemens S.P., Cynamon M.H., Swenson C.E., Ginsberg R.S. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium infection. Antimicrob. Agents Chemother. 1990; 34(6): 967–970.
  66. Gangadharam P.R., Ashtekar DA, Ghori N., Goldstein J.A., Debs R.J., Düzgünes N. Chemotherapeutic potential of liposome encapsulated streptomycin against experimental Myc.avium infections. J. Antimicr. Chemother. 1991; 28 (3):425–435.
  67. Merisko-Liversidge E., Liversidge G.G. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 2011; 63 (6): 427–440.
  68. Sanzhakov M.A., Medvedeva N.V., Prozorovskii V.N., Ipatova O.M. Fosfolipidnaya nanosistema transporta dlya preparatov rifamitsinovogo ryada [Phospholipid drug delivery nanosystem for rifamycins]. Mat-ly Moskovskoi mezhdunar. nauch.-prakt. konf. «Farmatsevticheskie i biomeditsinskie tekhnologii» [Proceedings of the Moscow International scientific-practical conference "Pharmaceutical and biomedical technology."]. Мoscow, 2012. 256–257 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 1970



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах