COVID-19, септический шок и синдром диссеминированного внутрисосудистого свертывания крови. Часть 2

Обложка


Цитировать

Полный текст

Аннотация

В статье рассматриваются вопросы нарушения системы гемостаза у пациентов с COVID-19. Нарастание коагулопатии, характерной для диссеминированного внутрисосудистого свертывания крови (ДВС-синдрома), ― ключевой признак ухудшения состояния и неблагоприятного прогноза у пациентов с COVID-19. Приводятся данные, полученные китайскими коллегами, согласно которым значительно повышенный уровень D-димера является одним из предикторов смерти. Также освещены предварительные рекомендации Международного общества тромбоза и гемостаза (International Society on Thrombosis and Haemostasis, ISTH, 2020) по определению таких маркеров, как D-димер, протромбиновое время и количество тромбоцитов, в качестве значимых прогностических маркеров у тяжелых больных COVID-19. Обосновывается необходимость антикоагулянтной терапии у госпитализированных больных. В статье обсуждаются особенности сепсиса у беременных. Приводятся данные метаанализа 19 исследований, посвященных оценке осложнений и исходов беременности у пациенток с различными коронавирусными инфекциями. Несмотря на осложненное течение беременности, не отмечено ни одного случая вертикальной передачи вирусной инфекции. В патогенезе тяжелых осложнений COVID-19 с формированием тяжелого острого респираторного дистресс-синдрома, полиорганной дисфункции ведущую роль играют супервоспаление и цитокиновый шторм. В статье в связи с вирусным сепсисом обсуждается роль гемофагоцитарного лимфогистиоцитоза как гипервоспалительного синдрома, характеризуемого фульминантной и фатальной гиперцитокинемией с полиорганной недостаточностью, роль гиперферритинемии в прогнозировании исходов тяжелого сепсиса. Обсуждаются группы пациентов высокого риска развития летальных исходов, а также необходимость антикоагулянтной и антицитокиновой терапии у больных COVID-19.

Полный текст

COVID-19 и коагулопатия

Одним из наиболее неблагоприятных прогностических признаков септических пациентов является коагулопатия. Хотя сегодня роль диссеминированного внутрисосудистого свертывания (ДВС) в патогенезе септического шока хорошо известна, в то же самое время надо признать, что в основном сепсис и септический шок хорошо изучены при бактериальной инфекции. Возможно, обусловленные COVID-19 (COronaVIrus Disease 2019) нарушения могут иметь свои особенности. Тем не менее существование определенных неспецифических универсальных ответов организма, к которым относятся ДВС, синдром системного воспалительного ответа (ССВО), а также подтвержденное наличие цитокинового шторма и острого респираторного дистресс-синдрома у тяжелых пациентов с COVID-19, дают основание полагать, что у них имеет место развитие коагулопатии с блокадой микроциркуляции, нарушением перфузии органов и в финале ― полиорганной недостаточности. Именно потому так важно было получить данные о функционировании системы гемостаза у пациентов с COVID-19. Последние данные подтвердили, что нарастание коагулопатии, характерной для ДВС-синдрома, ― ключевой признак ухудшения состояния и неблагоприятного прогноза у больных COVID-19. N. Tang и соавт. [1] определили, что значительно повышенный уровень D-димера является одним из предикторов смерти. Они отметили, что у умерших показатель D-димера составлял в среднем 2,12 мкг/мл (диапазон 0,77−5,27 мкг/мл), в то время как у выживших средний показатель был 0,61 мкг/мл (диапазон 0,35−1,29 млг/мг) при норме менее 0,5 мкг/мл. Уровень D-димера при поступлении был выше у тех пациентов, которые нуждались в реанимационной поддержке. N. Tang с колл. наблюдали развитие ДВС-синдрома на 4-й день у 71,4% умерших от COVID-19 пациентов и только у одного (0,6%) пациента, который выжил [1]. Отмечается также, что у лиц с тяжелым течением острого респираторного синдрома (severe acute respiratory syndrome coronavirus 2, SARS-CoV2), поступивших в отделения интенсивной терапии, отмечались высокие уровни провоспалительных цитокинов ― интерлейкинов (interleukin, IL) 2 и 7, гранулоцитарно-макрофагального колониестимулирующего фактора (granulocyte-macrophage colony-stimulating factor, GM-CSF), IFN γ-индуцибельного белка (interferon-gamma inducible protein, IP10), моноцитарного хемоаттрактантного белка 1 (monocyte chemoattractant proteine-1, MCP1), макрофагального белка воспаления альфа (macrophage inflammatory protein, MIP1α) и фактора некроза опухоли α (tumor necrosis factor alpha, TNF α), что позволяет предположить, что у них мог развиться эффект цитокинового шторма.

В большинстве отделений интенсивной терапии принято проводить мониторинг гемостатических маркеров для выявления коагулопатии. Китайские коллеги показали, что уровень D-димера при поступлении был выше у пациентов, нуждающихся в интенсивной терапии. Пациентов, у которых уровень D-димера повышен в 3−4 раза, следует госпитализировать даже при отсутствии других симптомов тяжести, поскольку это явно указывает на увеличение выработки тромбина.

Другими значимыми диагностическими тестами являются протромбиновое время и количество тромбоцитов. Протромбиновое время было незначительно пролонгировано у невыживших ― 15,5 (диапазон 14,4−16,3) с против 13,6 (13,0−14,3) с у выживших; нормальный диапазон ― 11,5−14,5 с [2].

Тромбоцитопения является своего рода предиктором высокой смертности при сепсисе. G. Lippi и колл. [3] провели метаанализ 9 исследований с участием 1779 пациентов с COVID-19, из них у 399 (22,4%) заболевание протекало в тяжелой форме. Количество тромбоцитов также было значительно ниже у пациентов с более тяжелым течением заболевания. Прогностически неблагоприятным был уровень тромбоцитов < 100 × 109/л; у наиболее тяжелых пациентов уровень тромбоцитов варьировал от 35 до 29 × 109/л. Помимо этих тестов, важным в прогностическом плане является снижение уровня фибриногена.

Основываясь на доступной в настоящее время литературе, Международное общество тромбоза и гемостаза (International Society on Thrombosis and Haemostasis, ISTH, 2020) рекомендует определение D-димера, протромбинового времени и количества тромбоцитов (в порядке убывания прогностической ценности) у всех пациентов с инфекцией COVID-19. Это может помочь в стратификации пациентов, которым требуются госпитализация и тщательный мониторинг [3].

Мониторинг протромбинового времени, D-димера, количества тромбоцитов и фибриногена может помочь и в определении прогноза госпитализированных пациентов с COVID-19. Если эти параметры ухудшаются, необходима более агрессивная поддержка в критических ситуациях и следует рассмотреть вопрос о более «экспериментальной» терапии и поддержке препаратами крови в зависимости от ситуации. Если эти параметры стабильны или улучшаются, это дает дополнительную уверенность в постепенном прекращении лечения, если это также подтверждается и клиническим состоянием пациента.

Нарастание лабораторных и клинических признаков ДВС у пациентов с COVID-19 свидетельствует о высочайшем риске быстрого развития септического шока и полиорганной недостаточности, что значительно увеличивает риск смерти. Замедление темпов образования тромбина является, наряду с другими лечебными мероприятиями, необходимым компонентом терапии, позволяющим прервать интенсивность тромботического шторма, усиливаемого цитокиновым штормом, и снизить риск смерти у тяжелых больных. Таким образом, пациентам с СOVID-19 показано назначение антикоагулянтной терапии. Единственным широкодоступным препаратом выбора в этом отношении являются препараты группы низкомолекулярных гепаринов. Профилактическую дозу низкомолекулярного гепарина следует назначать всем пациентам, включая некритических больных, которым требуется госпитализация по поводу инфекции COVID-19, при отсутствии каких-либо противопоказаний (активное кровотечение, количество тромбоцитов < 25 × 109/л), рекомендуется мониторинг клиренса креатинина при тяжелой почечной недостаточности (аномальные протромбиновое время или активированное частичное тромбопластиновое время не являются противопоказанием) [2]. Антикоагулянтная терапия у этих больных ассоциировалась с лучшим клиническим исходом по сравнению с теми, кто не принимал низкомолекулярных гепаринов. Особое значение имеет раннее начало антикоагулянтной терапии у пациентов с коморбидными состояниями, предрасполагающими к повышенному риску тромбообразования (сердечно-сосудистые заболевания; тромбозы в анамнезе, особенно рецидивирующие; системные аутоиммунные заболевания; заболевания, сопровождающиеся провоспалительным статусом; антифосфолипидный синдром и/или известная генетическая тромбофилия; ожирение; метаболический синдром; сахарный диабет; онкологические заболевания; гормональная контрацепция или менопаузальная гормональная терапия у женщин и др.). Отдельно следует отметить, что у госпитализированных пациентов также присутствует и иммобилизация как фактор риска, в том числе и тромбоэмболических осложнений, что еще раз требует крайне внимательной оценки, в частности, рисков венозного тромбоэмболизма. В этом смысле весьма показателен тот факт, что по крайней мере в Москве смерть большинства больных COVID-19 происходила от осложнений, таких как тромбоэмболия легочной артерии, или утяжеления хронических заболеваний.

COVID-19: беременность и роды

Беременные женщины ― это особая группа населения, подверженная большему риску развития сепсиса, чем население в целом [4]. В литературе было несколько сообщений о материнском сепсисе, вызванном гриппом, вирусом простого герпеса, вирусами ветряной оспы и чикунгуньи [5−10].

По оценкам исследования Глобальное бремени болезней (Global Burden of Disease Study, GBDS), характеризующего смертность и инвалидность от основных заболеваний, травм и факторов их риска, в 2015 г. смертность от материнского сепсиса и других инфекций во всем мире достигла 17 900 случаев, что составляет 6,5% от общего числа материнских смертей [11]. Заболеваемость материнским сепсисом составляет около 41−49 на 100 тыс. беременностей с уровнем смертности 1,8–4,5% в Великобритании и Соединенных Штатах [12]. В последние десятилетия отмечается тенденция к увеличению материнской заболеваемости и смертности. Однако неизвестна доля вирусного сепсиса в общей структуре материнского сепсиса.

Концепция о том, что беременность связана с подавлением иммунитета, создала представление о беременности как о состоянии иммунологической «слабости» и, следовательно, повышенной подверженности инфекционным заболеваниям. Иммунная система беременной женщины сложна и достаточно «деликатно» сбалансирована. Она толерантна к отцовским антигенам и аллогенному плоду и в то же время эффективно работает на выявление и защиту материнского организма от вторжения патогенных микроорганизмов, оберегая, таким образом, беременную женщину и плод [13].

Иммунологические характеристики во время беременности зависят от срока беременности. Провоспалительный T1-хелперный иммунный ответ (T-helper cell type 1, Th1) с высоким уровнем провоспалительных цитокинов, таких как IL6, IL8 и TNF α, наблюдается у беременных женщин в течение первого триместра беременности, что имеет решающее значение для распознавания беременности ― имплантации эмбриона, плацентации и начального роста плода. В последующие недели, во 2-м триместре, у беременных ослабевает Th1-тип реагирования иммунной системы и начинает в большей степени превалировать противовоспалительный Th2-тип иммунного ответа с характерным повышением уровней простагландина E2, IL4 и IL10, в то время как плод быстро растет. Перед родами иммунная система вновь возвращается к провоспалительному Th1-типу функционирования, что является необходимым условием «включения» механизмов, отвечающих за подготовку и инициацию родов [14]. Особенностью функционирования иммунной системы у беременной женщины является также пониженный уровень иммуноглобулина (immunoglobulin, Ig) G и уменьшение количества лимфоцитов Т-хелперов на протяжении всей беременности [15].

Очевидно, что иммунный ответ материнского организма претерпевает последовательно изменения в зависимости от срока беременности, но вовсе не подавляется постоянно. Уникальные иммунные реакции приводят к различным реакциям на патогены, что повышет восприимчивость беременных женщин к некоторым патогенам в зависимости от срока беременности. Помимо этого, локальный плацентарный иммунитет также влияет на системный иммунный ответ матери на чужеродные микроорганизмы. Например, субклинически протекающая вирусная инфекция в плаценте может повлиять на иммунную систему матери и повысить ее восприимчивость к различным патогенам, включая вирусы [16].

Результаты недавнего метаанализа 19 исследований, посвященных оценке осложнений и исходов беременности у пациенток с различными коронавирусными инфекциями, показали, что беременность в условиях заболевания COVID-19 ассоциируется с более высокими показателями невынашивания беременности, преждевременных родов, преэклампсии, кесарева сечения и случаев перинатальной смерти. Ни в одном случае не наблюдалось вертикальной передачи инфекции [17]. Всего было проанализировано 79 беременностей, протекающих на фоне коронавирусной инфекции: 41 (59%) с COVID-19, 12 (15,2%) с ближневосточным респираторным синдромом (middle east respiratory syndrome, MERS) и 26 (32,9%) с SARS (severe acute respiratory syndrome coronavirus, SARS). Большинство женщин (49 из 52; 89,3%) с коронавирусной инфекцией, как правило, сначала получали антибиотики широкого спектра действия, а затем противовирусную терапию и глюкокортикостероиды ― 67,7 (37/51) и 29,8% (12/31) случаев соответственно. Диагноз пневмонии был поставлен в 91,8% случаев, и наиболее распространенными симптомами были лихорадка (82,6%), кашель (57,1%), одышка (27,0%). При всех видах коронавирусных инфекций частота невынашивания беременности составила 39,1%, частота преждевременных родов до 37 нед ― 24,3%, преждевременный дородовый разрыв околоплодных оболочек ― 20,7%, преэклампсия ― 16,2%, задержка роста плода ― 11,7%; 84% женщин родоразрешены путем операции кесарева сечения; частота перинатальной смерти составила 11,1%; 57,2% новорожденных поступили в отделение реанимации и интенсивной терапии.

В 6 исследованиях сообщалось о наличии инфекции COVID-19 во время беременности. Данных о невынашивании беременности в связи с COVID-19, возникшей в течение первого триместра, не было. У 41,1% пациенток с COVID-19 наиболее распространенным неблагоприятным исходом беременности были преждевременные, ранее 37 нед, роды. Преждевременное излитие околоплодных вод произошло в 18,8% случаев (у 5 из 31; 95%- й доверительный интервал (ДИ) 0,8−33,5), в то время как частота беременностей, осложнившихся преэклампсией, составляла 13,6% (1/12; 95%-й ДИ 1,2−36,0), при этом не было зарегистрировано ни одного случая задержки роста плода. Частота кесарева сечения составила 91% (38/41; 95%-й ДИ 81,0−97,6), перинатальной смерти ― 7% (2/41; 95%-й ДИ 1,4−16,3), включая одно мертворождение и одну неонатальную смерть. У 43% (12/30; 95%-й ДИ 15,3−73,4) плодов развился фетальный дистресс; 8,7% (1/10; 95%-й ДИ 0,01−31,4) новорожденных госпитализированы в отделение реанимации и интенсивной терапии. Количество баллов по шкале Apgar < 7 через 5 мин было присвоено 4,5% новорожденных (1/41; 95%-й ДИ 0,4−12,6); не было зарегистрировано ни одного случая неонатальной асфиксии. Наконец, ни у одного из новорожденных не было признаков вертикальной передачи вируса.

Несмотря на то что большинство сообщений свидетельствует об отсутствии вертикальной передачи вируса, необходимы дальнейшие исследования влияния COVID-19 на течение беременности и организм как матери, так и плода. Нельзя забывать, что новые данные накапливаются ежедневно и информация постоянно обновляется. Возможно, в ближайшее время мы получим другие результаты [17].

Некоторые особенности вирусного сепсиса и возможности терапии больных COVID-19

Согласно имеющейся на сегодняшний день статистике, среди причин смертности при COVID-19 на первом месте находится дыхательная недостаточность вследствие острого респираторного дистресс-синдрома. Вторичный гемофагоцитарный лимфогистиоцитоз ― это малоизученный гипервоспалительный синдром (в условиях синдрома системного воспалительного ответа, ССВО), характеризующийся фульминантной и фатальной гиперцитокинемией с полиорганной недостаточностью [18]. У взрослых гемофагоцитарный лимфогистиоцитоз чаще всего вызывается вирусными инфекциями и возникает в 3,7−4,3% случаев сепсиса [19]. Основные симптомы, характерные для гемофагоцитарного лимфогистиоцитоза, ― это неремиттирующая лихорадка, цитопения и гиперферритинемия [20]. Поражение легких, включая острый респираторный дистресс-синдром, встречается примерно у 50% пациентов [21]. Цитокиновый профиль зависит от тяжести заболевания и характеризуется повышением IL2, IL7, GM-CSF, IP10, MCP1, MIP1α и TNF α [22]. Предикторами летальности из недавнего ретроспективного многоцентрового исследования 150 подтвержденных случаев COVID-19 в Ухане (Китай) являлись повышенный уровень ферритина (в среднем 1297,6 нг/мл у невыживших против 614,0 нг/мл у выживших; р < 0,001) и IL6 (р < 0,0001) [22, 23]. По сути, эти данные свидетельствовали о том, что смертность может быть обусловлена избыточным воспалением (тяжелый ССВО-шок) в условиях вирусной инфекции. Все пациенты с тяжелой формой COVID-19 должны быть обследованы на предмет супервоспаления и цитокинового шторма с использованием лабораторных (повышение ферритина в крови, снижение количества тромбоцитов или скорости оседания эритроцитов) и клинических проявлений в соответствии со шкалой H-score (таблица). H-score позволяет рассчитать вероятность наличия вторичного гемофагоцитарного лимфогистиоцитоза. Количество баллов выше 169 на 93% чувствительны и на 86% специфичны для гемофагоцитарного лимфогистиоцитоза. Гемофагоцитоз костного мозга не является обязательным для диагностики гемофагоцитарного лимфогистиоцитоза.

 

 

Таблица. Шкала H-score для определения вторичного гемофагоцитарного лимфогистиоцитоза [19]

Температура, °C

< 38,4

0

38,4–39,4

33

> 39,4

49

Органомегалия

Нет

0

Гепатомегалия или спленомегалия

23

Гепатомегалия и спленомегалия

38

Число цитопений*

Одна линия

0

Две линии

24

Три линии

34

Триглицериды, ммоль/л

< 1,5

0

1,5–4,0

44

> 4,0

64

Фибриноген, г/л

> 2,5

0

≤ 2,5

30

Ферритин, нг/мл

< 2000

0

2000–6000

35

> 6000

50

Сывороточная аспартатаминотрансфераза, МЕ/л

< 30

0

≥ 30

19

Гемофагоцитоз аспирата костного мозга

Нет

0

Да

35

Известная иммуносупрессия**

Нет

0

Да

18

* Определяется как концентрация гемоглобина ≤ 9,2 г/дл (≤ 5,71 mmol/L), или количество лейкоцитов ≤ 5,000/ mm³, или количество тромбоцитов ≤ 110,000/mm³, или все эти критерии одновременно.

** ВИЧ-положительный или получающий длительную иммуносупрессивную терапию (т.е. глюкокортикостероиды, циклоспорин, азатиоприн).

 

Согласно итальянским рекомендациям Национального института инфекционных болезней (National Institute for the Infectious Diseases, NIID) [24], при ведении больных COVID-19, помимо повышения ферритина в крови, снижения количества тромбоцитов или скорости оседания эритроцитов как маркеров воспаления, крайне важен мониторинг таких показателей, как D-димер, фибриноген, С-реактивный белок, лактатдегидрогеназа, триглицериды, что, безусловно, с нашей точки зрения, имеет крайне важное значение для суждения о масштабе как ССВО и цитокинового шторма, так и нарушений гемостаза и нарастания риска тромботических или (наблюдается реже при GOVID-19) геморрагических осложнений, а также развития тромбоза микроциркуляции и полиорганной недостаточности.

На сегодняшний день этиотропная терапия больных COVID-19 не разработана. В научных исследованиях основным является работа над созданием вакцины, что позволит создать иммунитет у неинфицированных людей и предупредить развитие заболевания, а соответственно, и пандемии. В терапии уже заболевших COVID-19 основное внимание должно быть привлечено:

  • к торможению цитокинового шторма (мишени ― IL1, система комплемента, ингибиторы янус киназы);
  • противовирусным препаратам (используемым при лечении ретровирусов ― ВИЧ);
  • иммунной терапии с использованием внутривенного иммуноглобулина и реконвалесцентной плазмы;
  • блокаде связывания вируса с рецепторами ангиотензин-превращающего фермента 2 и CD147 на поверхности клеток слизистой оболочки дыхательных путей, эндотелия, тромбоцитов, нервной системы, желудочно-кишечного тракта и др.;
  • торможению тромботического шторма и ДВС.

Международные сообщества врачей и исследователей сегодня призывают к совместной работе по выработке и оценке оптимальных методов терапии. Одним из инициированных сегодня международных исследований является «9 Arms international trial for cytokine storm». Это рандомизированное открытое контролируемое исследование, основной целью которого является оценка эффективности и безопасности иммунных препаратов в предотвращении смерти у пациентов с COVID-19 и цитокиновым штормом (подразумевается применение таких препаратов, как иммуноглобулин внутривенно / реконвалесцентная плазма, колхицин/тоцилизумаб (ингибитор IL6)/анакинра (ингибитор IL1b) или канакинумаб (ингибитор IL1b) [25]. Обсуждается включение в исследование применения циклоспорина/талидомида совместно с глюкокортикостероидами в тяжелых случаях цитокинового шторма. Хотя надо отметить, что предварительные результаты китайских и итальянских исследователей свидетельствуют об отсутствии положительного эффекта глюкокортикостероидов у больных пневмонией и COVID-19. Как и во время предыдущих пандемий (тяжелый острый респираторный синдром и ближневосточный респираторный синдром), глюкокортикостероиды обычно не рекомендуются и могут усугубить повреждение легких, связанное с COVID-19. Однако при тяжелом ССВО иммуносупрессия, возможно, будет благотворной. Повторный анализ данных 3-го этапа рандомизированного контролируемого исследования блокады IL1 анакинрой (Аnakinra) при сепсисе показал значительное преимущество выживаемости у пациентов с тяжелым ССВО без увеличения побочных эффектов [26].

Влияние на систему комплемента также является патогенетически обоснованным у пациентов с ССВО и цитокиновым штормом. Экулизумаб (Eculizumab) подавляет терминальную активность комплемента человека, обладая высокой аффинностью к его С5-компоненту. Как следствие, полностью блокируются расщепление компонента С5 на С5а и С5b и образование терминального комплекса комплемента С5b-9 [27].

Многоцентровое рандомизированное контролируемое исследование тоцилизумаба (Tocilizumab) (блокада рецепторов IL6 пациентов с COVID-19) было одобрено в Китае у пациентов с пневмонией, COVID-19 и повышенным уровнем IL6.

Ингибирование янус-киназы (janus kinases, JAK) может влиять как на воспаление, так и на проникновение вируса SARS-CoV2 в клетку [28].

В настоящее время лечение пока сводится к применению при легких формах и средней степени тяжести гидроксихлорохина ± азитромицин или других антибиотиков широкого спектра действия и/или противовирусных препаратов, применяемых при лечении ВИЧ, ― лопинавир/ритонавир или, как альтернатива, дарунавир [29].

Гидроксихлорохин давно и широко применяется при лечении малярии, а также при ряде ревматологических заболеваний. Более того, гидроксихлорохин начал применяться и у больных с рефрактерными к стандартной терапии формами антифосфолипидного синдрома, в том числе при так называемом акушерском антифосфолипидном синдроме [30]. Препарат обладает противовоспалительным эффектом, снижает уровень провоспалительных цитокинов IL1, IL6. Гидроксихлорохин повышает лизосомальный рН в антигенпрезентирующих клетках. Повышение внутриклеточного pH приводит к замедлению антигенного ответа и уменьшает связывание пептидов рецепторов главного комплекса гистосовместимости. При воспалительных состояниях гидроксихлорохин блокирует толл-подобные рецепторы (toll-like receptors, TLR) [31]. Toлл-подобный рецептор 9, который распознает ДНК-содержащие иммунные комплексы, приводит к выработке интерферона и «заставляет» дендритные клетки созревать и представлять антиген Т-клеткам. Гидроксихлорохин, снижая сигнализацию TLR, уменьшает активацию дендритных клеток и воспалительный процесс. TLR ― это клеточные рецепторы для микробных продуктов, которые индуцируют воспалительные реакции через активацию врожденного иммунитета. Надо заметить, что и при SARS-CoV и MERS препарат также применялся с успехом. Тем не менее данные об эффективности и безопасности гидроксихлорохина все еще противоречивы, и вопрос требует дальнейшего изучения. Скорее всего, компрометирующими терапию моментами являются способность гидроксихлорохина взаимодействовать с другими лекарственными препаратами, а также риск развития побочных эффектов при применении нагрузочных доз у пациентов с сопутствующими заболеваниями, в первую очередь сердца, печени, почек и глаз.

Более ранние исследования показали, что потенциальное противовирусное действие этого препарата при MERS и птичьем гриппе H5N1 может зависеть от нескольких механизмов, таких как изменение рН клеточной мембраны, которое необходимо для слияния вирусов, и вмешательство в гликозилирование вирусных белков. Было показано, что гидроксихлорохин обладает аналогичной, если не лучшей эффективностью in vitro в отношении SARS-COV-2. Недавнее исследование продемонстрировало in vitro эффективность хлорохина и ремдесивира в ингибировании репликации SARS-COV-2 [32]. Кроме того, появляющиеся сообщения из Китая свидетельствуют о том, что хлорохин продемонстрировал превосходство в снижении как тяжести, так и продолжительности заболевания без существенных побочных явлений почти у 100 пациентов. В свете этих результатов экспертная группа консенсуса в Китае рекомендовала хлорохин для лечения COVID-19. Тем не менее следует с осторожностью подходить к назначению гидроксихлорохина в группах пациентов с коморбидными состояниями. Побочные эффекты могут включать в себя удлинение QT на электрокардиограмме, снижение судорожного порога, анафилаксию или анафилактоидную реакцию, нервно-мышечные нарушения, нервно-психические расстройства, панцитопению, нейтропению, тромбоцитопению, анемию, гепатит. При порфирии, дефиците глюкозо-6-фосфатдегидрогеназы (G6PD), эпилепсии, сердечной недостаточности, недавнем инфаркте миокарда применять препарат противопоказано. Более того, перед назначением хлорохина и гидроксихлорохина необходимо исключать наличие дефицита G6PD.

Рекомендованный ISTH низкомолекулярный гепарин у пациентов с COVID-19, помимо антикоагулянтного эффекта, в условиях ССВО проявляет также, по-видимому, противовоспалительные (антицитокиновые) свойства, которые могут быть дополнительным преимуществом при коронавирусной инфекции [2, 33].

Учитывая особую значимость системы протеина С при сепсисе, многообещающей представляется терапия рекомбинантным тромбомодулином и препаратами активированного протеина С, которые показали свою эффективность и отсутствие повышенного риска геморрагических осложнений при бактериальном сепсисе. В исследовании G. Bernard и соавт. [34] показано, что применение дротрекогина альфа (рекомбинантного активированного протеина С) позволяет снизить уровень D-димера и IL6 в плазме и значительно увеличить выживаемость по сравнению с контрольной группой. Важно отметить, что этот препарат эффективен лишь при дефиците эндогенного протеина С. Исследование международной оценки эффективности и безопасности рекомбинантного протеина С при тяжелом сепсисе (Protein C Worldwide Evaluation in Severe Sepsis, PROWESS) [34] показало, что рекомбинантный человеческий активированный протеин С (дротрекогин альфа активированный) уменьшает 28-дневную летальность от любых причин у больных с тяжелым сепсисом. Комитет по надзору за пищевыми и лекарственными продуктами (Food and Drug Administration, FDA) США одобрил дротрекогин альфа для лечения только больных с тяжелым сепсисом, но, основываясь на анализе данных, полученных в исследовании PROWESS, ограничился разрешением лечения больных, имеющих высокий риск смерти (что определяется по шкале острых функциональных и хронических изменений в состоянии здоровья APACHE). Такое решение мотивировалось тем, что в исследовании PROWESS у больных с дисфункцией двух или более органов, пролеченных дротрекогином альфа, отмечалось уменьшение относительного риска смерти на 22% при одинаковом риске кровотечения в сравнении с общей популяцией больных. С другой стороны, у больных с недостаточностью одного органа лечение дротрекогином альфа сопровождалось статистически недостоверным уменьшением риска 28-дневной летальности от всех причин. В последующих исследованиях появились новые данные в пользу применения дротрекогина альфа при сепсисе [34]. Так, была доказана безопасность одновременного назначения дротрекогина альфа и низких доз низкомолекулярного гепарина при тяжелом сепсисе [35]. Следует отметить, что, учитывая антикоагулянтную и одновременно выраженную противоспалительную активность активированного протеина С, терапия дротрекогином альфа у ряда пациентов с тяжелым сепсисом может быть многообещающей.

Препараты рекомбинантного антитромбина как важнейшего естественного антикоагулянта также могут быть весьма эффективны у пациентов с сепсисом и ДВС, когда имеет место снижение уровня антитромбина в результате коагулопатии потребления.

Ингибиторы фосфодиэстераз (пентоксифиллин, дипиридамол) также могут рассматриваться как дополнительная терапия больных COVID-19 [36]. Пентоксифиллин обладает тремя основными важнейшими свойствами ― улучшением реологических свойств крови, противовоспалительными и антиоксидантными свойствами. Ингибиция фосфодиэстеразы вызывает повышение уровня внутриклеточного циклического аденозинмонофосфата (цАМФ), что, в свою очередь, обусловливает торможение синтеза TNF α. Наиболее важный эффект пентоксифиллина ― улучшение деформируемости эритроцитов. Предотвращая потерю эритроцитами ионов калия, пентоксифиллин снижает наклонность эритроцитов к гемолизу, что в условиях высокой вероятности блокады микроциркуляции при сепсисе и ССВО играет исключительно важную роль. Более того, пентоксифиллин тормозит адгезию гранулоцитов к эндотелию и снижает экспрессию их поверхностных антигенов CD11a, CD11b, СD11с и CD18, что способствует уменьшению микроциркуляторных нарушений. Применение пентоксифиллина при лечении геморрагического и эндотоксинового шока с высокой достоверностью увеличивало выживаемость пациентов.

В последнее время несколько клинических испытаний и исследований на животных продемонстрировало эффективность пентоксифиллина в лечении фиброза путем ослабления и обратного развития фиброзных поражений, что делает весьма перспективным и многообещающим применение препарата у пациентов с COVID-19 [36]. Пентоксифиллин может действовать в качестве потенциального антифиброзного агента и у человека, ингибируя пролиферацию клеток и/или отложение коллагена в клетках, ответственных за накопление внеклеточного матрикса. Этот эффект опосредуется в основном путем внеклеточной деградации коллагена, но не снижением синтеза коллагена [37]. Наиболее важными в семействе протеаз, участвующих в жестком контроле внеклеточного матрикса, являются матриксные металлопротеиназы (ММП). В то время как одни ММП снижают процесс фиброза, другие способствуют его развитию. В дополнение к своим ферментативным свойствам ММП способны активировать цитокины, факторы роста и рецепторы клеточной поверхности. Одной из ММП, занимающей центральное место в патогенезе неоплазии и легочного фиброза, является металлопротеиназа 3-го типа (ММП3). Гистологическое исследование ткани фиброзированных легких у больных, перенесших вирусную инфекцию, демонстрирует избыточное депонирование ММП3 [38]. В эксперименте пентоксифиллин значительно снижает экспрессию генов профибротических металлопротеиназ ― ММП1 (известную как коллагеназа-1) и ММП3 (стромилизин-1). В настоящее время все еще ограничен арсенал антифибротических средств, которые могли бы эффективно тормозить фиброзные поражения, поэтому представляется целесообразным рассмотреть потенциальную клиническую значимость пентоксифиллина в профилактике фиброза у больных COVID-19.

Весьма интересным представляется сообщение из Китая об успешном применении дипиридамола (DIP) наряду с низкомолекулярным гепарином у пациентов с COVID-19 [39]. Дипиридамол, являясь антиагрегантом и вазодилататором, ингибирует агрегационную активность тромбоцитов благодаря нескольким механизмам: ингибирует фосфодиэстеразу, блокирует обратный захват аденозина (который действует на А2-рецепторы тромбоцитов и активирует аденилатциклазу) и ингибирует синтез тромбоксана А2. Ингибируя аденозиндезаминазу и фосфодиэстеразу III, дипиридамол повышает в крови содержание эндогенных антиагрегантов ― аденозина и цАМФ, стимулирует выделение простациклина эндотелиальными клетками, тормозит захват аденозинтрифосфата эндотелием, что ведет к увеличению его содержания на границе между тромбоцитами и эндотелием. Дипиридамол в большей степени подавляет адгезию тромбоцитов, чем их агрегацию, удлиняет продолжительность циркуляции тромбоцитов. Согласно данным Х. Liu и соавт. [39], дипиридамол подавлял репликацию COVID-19 in vitro, усиливал эффекты интерферона типа I и улучшал легочную патологию в модели вирусной пневмонии. При анализе 12 инфицированных COVID-19 пациентов, получавших профилактическую антикоагулянтную терапию, было обнаружено, что добавление дипиридамола ассоциировалось со значительным повышением количества тромбоцитов и лимфоцитов и снижением уровня D-димера по сравнению с контролем. Через 2 нед от начала лечения дипиридамолом 3 из 6 тяжелых пациентов (60%) и все 4 пациента с легкой формой заболевания (100%) были выписаны из больницы. Один больной в критическом состоянии с чрезвычайно высоким уровнем D-димера и лимфопенией, получающий DIP, умер. Все остальные пациенты находились в клинической ремиссии. Таким образом, включение DIP в терапевтические мероприятия при COVID-19 может быть потенциально эффективным через снижение репликации вируса, подавление избыточной реактивности тромбоцитов и адгезии последних к эндотелию, а также через влияние на иммунитет. Для подтверждения этих терапевтических эффектов необходимы более масштабные клинические испытания DIP [39].

Многочисленные субстанции, производимые нейтрофилами, являются точками приложения исследований, направленных на разработку новых терапевтических стратегий, направленных на «нейтрофильную составляющую» в патогенезе тяжелых, плохо поддающихся стандартной терапии аутоиммунных тромбовоспалительных заболеваний и патологических состояний.

Анализ РНК-секвенирования цельной крови пациентов с васкулитом AAV (antineitrophil cytoplasmic antibodies associated vasculitis) показал, что число гранулоцитов низкой плотности (low-density granulocytes, LDGs), способных продуцировать большое количество так называемых внеклеточных ловушек нейтрофилов (neutrophil extracellular traps, NETs), связано со степенью активности заболевания и резистентностью к терапии. Следовательно, в ситуациях с повышенной концентрацией LDGs пациенту требуется более агрессивная терапия. Транскриптомный анализ нейтрофилов показал, что гликопротеиновый лиганд-1 молекулы адгезии P-селектина (PSGL-1) может являться потенциальной терапевтической мишенью при первичном антифосфолипидном синдроме. Так, в эксперименте у мышей с дефицитом PSGL-1, как оказалось, снижено образование NETs [40].

В заключение надо отметить, что, несмотря на множество возможных точек приложения различных терапевтических подходов и появление новых субстанций, в настоящее время предпочтение нужно отдавать не только эффективным, но и максимально безопасным препаратам.

Заключение

Пандемия COVID-19 ― величайший вызов всему человечеству и медицинскому сообществу в XXI в. То, как человечество справится с этим вызовом, зависит от многих факторов, но именно на медицинское сообщество сегодня возложены основные надежды. Современная медицинская наука добилась больших успехов в области молекулярной биологии и медицины, использовании нанотехнологий и робототехники, но к атаке нового вируса SARS-CoV-2 оказалась не готова. В условиях интенсивного поиска оптимальной терапии и методов сдерживания распространения вирусной инфекции важнейшим вопросом является сохранение здоровья и жизни населения. Анализ причин смерти больных COVID-19 позволяет сделать заключение, что именно неадекватная активация реакций воспаления ― супервоспаление с цитокиновым штормом ― и чрезмерная активация системы гемостаза с тромботическим штормом играют основную роль в возникновении острого респираторного дистресс-синдрома и дыхательной недостаточности, полиорганной недостаточности и шока, а также венозного и артериального тромбоэмболизма. С момента открытия феномена Санарелли−Шварцмана прошло больше века (!), но фундаментальность и гениальность этого открытия во время пандемии COVID19 засияли новыми гранями. Именно этот феномен впервые продемонстрировал неразрывность иммунных, воспалительных и тромботических механизмов в развитии универсального неспецифического ответа организма на специфические (инфекционные и т.д.) и неспецифические патогенные экзо- и эндогенные стимулы. Предсуществующая слабая активация воспаления (low-grade inflammation) и/ или системы гемостаза может стать тем необходимым условием первого удара (first hit) или сенсибилизации организма, которое в реакции Санарелли−Шварцмана может приравниваться к введению первой сублетальной инъекции эндотоксина. Внедрение вируса SARS-CoV2 (second hit ― второй удар) в эпителиальные клетки дыхательных путей с развитием сначала местной реакции воспаления (интерстициального) в ткани легких может быстро приводить к генерализации воспаления и острому респираторному дистресс-синдрому вплоть до развития шока и полиорганной недостаточности. В то же время активация когуляционного каскада и тромбоцитарного звена гемостаза в условиях цитокинового шторма, активации системы комплемента и формирования внеклеточных нейтрофильных ловушек ведет к тромбированию сосудов, прежде всего микроциркуляторного звена. В случае предсуществующей тромбофилии многократно растут риски и тромбоэмболических осложнений.

Степень тяжести течения COVID-19 зависит от патогенности вируса, иммунокомпетентности организма и коморбидности. Сегодня уже известно, что вирус SARS-CoV2 высококонтагиозен, имеет тропность к эпителию слизистой оболочки нижних дыхательных путей и характеризуется быстрым развитием интерстициальной пневмонии с исходом в фиброз. В то же время при COVID-19 процент летальности меньше по сравнению с процентом летальности при ближневосточном респираторном синдроме MERS, вызываемом другим коронавирусом. Учитывая высокую скорость распространения вируса SARS-CoV2 в мире в отличие от SARS-CoV, количество умерших в мире людей, заболевших COVID-19, уже давно и значительно превысило такой же показатель при MERS. Таким образом, при относительно низком проценте летальности и одновременно высокой контагиозности вирус SARS-CoV2 уже стал причиной смерти более 83 тыс. человек в мире по состоянию на 08.04.2020; количество же случаев заражения вплотную приблизилось к 1,5 млн человек. Разный процент летальности при СOVID-19 в разных популяциях во многом может быть связан с такими факторами, как разный иммунный статус, коморбидность и возраст пациентов.

Бо`льшая часть умерших пациентов, инфицированных SARS-CoV2, ― это больные пожилого возраста и люди с тяжелыми коморбидными состояниями. С точки зрения клинических эффектов СOVID-19 на здоровье и жизнь больных важны:

а) оценка краткосрочных эффектов и предупреждение летальности;

б) оценка долгосрочных эффектов и профилактика поствоспалительного фиброза легких.

Согласно последним данным [41], даже у переболевших COVID-19 в бессимптомной форме при компьютерной томографии выявляются признаки поражения легких. Так, из 104 инфицированных на круизном лайнере Diamond Princesse у 76 человек заболевание протекало бессимптомно. При последующем компьютерном томографическом обследовании изменения в легочной ткани по типу «матового стекла» было обнаружено у 41 (54%) человека. Этот тревожный факт не должен оставаться без внимания и требует дальнейшего изучения. Возможно, этот факт связан с особенностями коронавируса и чрезвычайной агрессивностью в отношении легочной ткани. Поэтому крайне важно выделять группы высокого риска развития летальных исходов при тяжелых формах заболевания с развитием таких осложнений, как острый респираторный дистресс-синдром, шок и тромбоэмболические осложнения. С другой стороны, не менее важный аспект ― профилактика последствий вирусного повреждения легких в группе пациентов как с тяжелым, так и легким течением заболевания. К высоким группам риска следует относить пациентов, имеющих провоспалительный и/или протромботический статус, в частности:

1) аутоиммунные и ревматические заболевания, которые нередко сопровождаются как нарушениями иммунокомпетентности, так и провоспалительным статусом и нередко активацией системы гемостаза: в первую очередь это касается пациентов с циркуляцией антифосфолипидных антител;

2) сердечно-сосудистые заболевания: хорошо известно, что воспаление ― неотъемлемый компонент атеротромбоза и других хронических воспалительных заболеваний;

3) сахарный диабет, метаболический синдромом, ожирение. Жировая ткань ― источник провоспалительных цитокинов, ингибитора активатора плазминогена типа 1 (PAI-1) (способствует подавлению фибринолиза, что в условиях ССВО повышает риск микрофибринирования сосудов микроциркуляции);

4) заболевания бронхолегочной системы ― хроническая обструктивная болезнь легких и др.;

5) венозные и/или артериальные тромбозы в анамнезе;

6) известная генетическая тромбофилия и/или антифосфолипидный синдром. В условиях коронавирусной инфекции риск развития катастрофической формы антифосфолипидного синдрома высокий;

7) онкологические заболевания: пациенты с онкологическими заболеваниями представляют традиционно группу риска развития венозного тромбоэмболизма, в особенности получающие гормональную и/или химиотерапию;

8) гормональная заместительная (менопаузальная) терапия;

9) прием гормональных контрацептивов;

10) пожилой возраст: даже в отсутствие тяжелой коморбидности в пожилом возрасте нарастает интенсивность воспаления (так называемое воспаление низкой интенсивности, или lowe-grade inflammation). Считается, что lowe-grade inflammation является одним из механизмов старения человека.

Особого внимания заслуживают пациенты, получающие оральные антикоагулянты ― варфарин или прямые ингибиторы фактора Ха (с нарушениями ритма сердца, искусственными клапанами сердца, после перенесенного тромбоза, с антифосфолипидным синдромом и т.д.). Мы считаем, что переход на низкомолекулярные гепарины в ситуации тяжелого течения ССВО более обоснован с точки зрения как снижения рисков геморрагических осложнений, так и возможного позитивного эффекта низкомолекулярного гепарина на цитокины, систему комплемента и взаимодействие между активированными тромбоцитами и эндотелием. Применение оральных антикоагулянтов, в том числе новых, ограничено в связи с возможным взаимодействием с другими лекарственными препаратами, применяемыми при COVID-19.

Необходимость применения антикоагулянтов у больных COVID-19 в группах высокого риска тромбоэмболических осложнений на сегодняшний день не вызывает сомнения. Более того, в некоторых странах, в частности во Франции, США, уже подготовлены локальные национальные протоколы по профилактике тромботических осложнений у больных COVID-19. Среди существующих сегодня протоколов наиболее удачным нам представляется французский (см. приложение), хотя, безусловно, он также будет претерпевать изменения и дополнения.

Учитывая роль цитокинового шторма и ДВС-синдрома в патогенезе нарушений при тяжелых формах COVID-19, с нашей точки зрения, именно терапия, направленная на снижение уровня цитокинов и комплемент (анакинра, тоцилизумаб, экулизумаб и другие противовоспалительные препараты), а также избыточной тромбинемии (низкомолекулярный гепарин), на сегодняшний день играет определяющую роль в снижении рисков смерти этих больных. Включение ингибиторов фосфодиэстераз (в частности, пентоксифиллина и дипиридамола) в качестве дополнительной терапии к низкомолекулярным гепаринам целесообразно для улучшения состояния тромбоцитарно-сосудистого звена системы гемостаза и, соответственно, перфузии тканей. С другой стороны, «антифиброзный эффект» пентоксифиллина может быть дополнительным преимуществом при использовании пентоксифиллина у больных COVID-19. В этой связи следует также обратить внимание на препарат с известным эффектом в отношении предупреждения развития фиброза тканей ― доксициклин, одобренный FDA для использования в качестве ингибитора матриксных металлопротеиназ и коллагеназы. Возможно, включение в схему лечения доксициклина в качестве антибиотика широкого спектра действия с дополнительным положительным эффектом в отношении предупреждения фиброза весьма обоснованно.

В настоящее время ведутся исследования в разных направлениях по созданию оптимальной терапии больных COVID-19. И есть надежда, что в ближайшее время будут предложены более эффективные лечебные протоколы.

ПРИЛОЖЕНИЕ

Национальные клинические рекомендации по ведению пациентов с COVID-19 от Рабочей группы Комитета по тромбозу и гемостазу (Groupe Français d’Etude de l’Hémostase et de la Thrombose, GFHT) Французского общества гематологов, 2020

Цель № 1: определить уровень риска тромбоза у пациентов с COVID-19

  1. Определение известных факторов риска тромбоэмболизма, таких как:

— активный рак (лечение в течение последних 6 мес);

— недавний личный анамнез (< 2 лет) тромбоэмболического события;

— другие факторы риска (возраст > 70 лет, длительный постельный режим, послеродовой период, комбинированная оральная контрацепция).

  1. Определение и характеристика факторов риска тромбоэмболизма, которые являются решающими при ведении пациентов с COVID-19:

— степень тяжести COVID-19 отражает интенсивность лечения:

  • отсутствие кислородотерапии (O2);
  • оксигенотерапия, назальная высокопоточная оксигенотерапия или искусственная вентиляция легких;

— индекс массы тела.

C учетом вышеуказанных факторов выделяют 4 уровня риска:

а) низкий риск: пациент не госпитализирован, индекс массы тела < 30 кг/м2, без дополнительного фактора риска тромбоэмболизма;

б) средний риск: индекс массы тела < 30 кг/м2 ± факторы риска тромбозов в отсутствие необходимости назальной высокопоточной оксигенотерапии или искусственной вентиляции легких;

в) высокий риск:

— индекс массы тела < 30 кг/м2 ± фактор риска тромбоэмболизма в условиях назальной высокопоточной оксигенотерапии или искусственной вентиляции легких;

— индекс массы тела > 30 кг/м2 без дополнительного фактора риска тромбоэмболизма в отсутствие необходимости назальной высокопоточной оксигенотерапии или искусственной вентиляции легких;

— индекс массы тела > 30 кг/м2 с дополнительным фактором риска тромбоэмболизма в отсутствие необходимости назальной высокопоточной оксигенотерапии или искусственной вентиляции легких;

д) очень высокий риск:

— индекс массы тела > 30 кг/м2 с дополнительным фактором риска тромбоэмболизма в условиях назальной высокопоточной оксигенотерапии или искусственной вентиляции легких;

— экстракорпоральная мембранная оксигенация (венозная или веноартериальная);

— катетерассоциированный тромбоз;

— тромбоз экстраренального очищающего фильтра;

— выраженный воспалительный синдром (ССВО) и/или гиперкоагуляция (например, фибриноген > 8 г/л или D-димеры > 3 мкг/мл или 3000 нг/мл).

Цель № 2: мониторинг системы гемостаза госпитализированных пациентов с COVID-19

  1. Контроль следующих параметров гемостаза по крайней мере каждые 48 ч:

— количество тромбоцитов, протромбиновое время, активированное частичное тромбопластиновое время, фибриноген и D-димеры.

  1. В тяжелых случаях при клиническом ухудшении, тромбоцитопении и/или снижении концентрации фибриногена также показано определение уровня мономеров фибрина, факторов II и V, а также антитромбина.

Цель № 3: антикоагулянтнaя терапия пациентов с COVID-19

  1. Всех госпитализированных пациентов показано перевести с терапии пероральными антикоагулянтами (антагонисты витамина К или новые прямые оральные антикоагулянты ) на терапию гепаринами (риск нестабильности и лекарственного взаимодействия при использовании оральных антикоагулянтов выше).
  2. В случае среднего риска тромбоэмболизма показан низкомолекулярный гепарин в профилактических дозах:

— эноксапарин в дозе 4000 МЕ / 24 ч подкожно, или тинзапарин по 3500 МЕ / 24 ч подкожно. Фондапаринукс по 2,5 мг / 24 ч подкожно является альтернативой, если клиренс креатинина (Clcr) превышает 50 мл/мин.

  1. При наличии тяжелой почечной недостаточности:

— эноксапарин в дозе 2000 МЕ / 24 ч подкожно для Clcr от 15 до 30 мл/мин или тинзапарин по 3500 МЕ / 24 ч подкожно для Clcr от 20 до 30 мл/ мин.

(!) У пациентов, получающих низкомолекулярный гепарин в стандартной профилактической дозе, контроль анти-Ха-активности не показан.

  1. В случае высокого тромботического риска показана более интенсивная профилактика низкомолекулярным гепарином в следующих дозах:

— эноксапарин в дозе 4000 МЕ / 12 ч подкожно или по 6000 МЕ / 12 ч подкожно при массе тела > 120 кг;

— при почечной недостаточности (Clcr < 30 мл/мин) желательно назначение нефракционированного гепарина в дозе 200 МЕ/кг / 24 ч.

(!) У пациентов, получающих дозу, выше стандартной профилактической дозы, рекомендуется контролировать анти-Ха-активность через 4 ч после 3-й инъекции и далее регулярно в случае почечной недостаточности с целью исключения передозировки и кровотечения.

  1. В случае очень высокого тромботического риска показана терапия гепаринами в лечебных дозах:

— эноксапарин в дозе 100 МЕ/кг / 12 ч подкожно или нефракционированный гепарин в дозе 500 МЕ/кг / 24 ч при тяжелой почечной недостаточности.

(!) У всех пациентов с ожирением (индекс массы тела > 30 кг/м2), риск тромбоза у которых высокий или очень высокий, показан следующий режим терапии:

— эноксапарин в дозе 4000 МЕ / 12 ч подкожно или по 6000 МЕ / 12 ч подкожно при весе > 120 кг.

В условиях факторов риска тромбоэмболизма и назальной высокопоточной оксигенотерапии или искусственной вентиляции легких:

— эноксапарин в дозе 100 МЕ/кг (фактический вес) / 12 ч подкожно, но не более 10 000 МЕ / 12 ч подкожно; или

— нефракционированный гепарин по 500 МЕ/ кг / 24 ч.

  1. Всем пациентам, получающим нефракционированный гепарин, по крайней мере каждые 48 ч и после каждого изменения дозы необходим контроль анти-Ха-активности: риск кровотечения контролируется в пределах 0,3−0,5 МЕ/мл при более высоких профилактических дозах (доза 200 МЕ/кг / 24 ч) и в пределах 0,5−0,7 МЕ/мл при использовании лечебных доз (начальная доза 500 МЕ/кг / 24 ч).
  2. Применение экстракорпоральной мембранной оксигенации (веновенозной или вено-артериальной) автоматически переводит пациента в группу очень высокого тромботического риска. Поэтому предлагается назначать антикоагулянтную терапию в лечебных дозах:

— нефракционированный гепарин с момента начала экстракорпоральной мембранной оксигенации (независимо от потока экстракорпоральной мембранной оксигенации) для достижения цели анти-Ха в диапазоне 0,5−0,7 МЕ/мл.

  1. При выраженном воспалительном синдроме, или гиперкоагуляции (фибриноген > 8 г/л или D-димеры > 3 мкг/мл или 3000 нг/мл), или быстром повышении концентрации D-димеров показаны антикоагулянты в лечебных дозах даже при отсутствии клинических признаков тромбоза, но с учетом риска кровотечения.
  2. При терапии нефракционированным гепарином рекомендуется контролировать количество тромбоцитов не реже одного раза в 48 ч. Снижение количества тромбоцитов более чем на 40% между 4-м и 14-м днями лечения требует оценки ДВС-синдрома и исключения гепарининдуцированной тромбоцитопении.
  3. В случае полиорганной недостаточности или коагулопатии потребления с резким снижением концентрации фибриногена, количества тромбоцитов и уровня фактора V необходимо корректировать интенсивность гепариновой терапии, поскольку эти события связаны с повышением риска кровотечения.
  4. Продолжительность и интенсивность тромбопрофилактики должны быть пересмотрены в зависимости от тяжести инфекционного процесса и факторов риска.

Цель № 4: применение иных мер, кроме антикоагулянтного лечения, для профилактики тромботического риска

  1. Отменить любую гормональную терапию и гормональные контрацептивы (комбинированные оральные контрацептивы, заместительная гормональная терапия, тамоксифен) у пациентов с COVID-19, нуждающихся в тромбопрофилактике.
  2. Организовать специальный канал связи между службами медицинской помощи, отделением реанимации и лабораторией гемостаза для оптимальной передачи биологических результатов (в частности, количества тромбоцитов, фибриногена, D-димеров и анти-Ха-активности) для быстрой корректировки доз применяемых гепаринов в терапии.
  3. Заподозрить легочную эмболию у любого пациента с внезапным ухудшением дыхания или гемодинамики, особенно в случае дисфункции правых отделов сердца.
  4. Дуплексное сканирование вен нижних конечностей показано при любом необъяснимом обострении клинической картины или в случае внезапного повышения уровня D-димеров. Это исследование также показано у пациентов с центральным венозным катетером.
  5. Интермиттирующая пневмокомпрессия ― один из вариантов неспецифической профилактики, который следует также рассмотреть.
  6. В случае тромбоза у молодого пациента без дополнительных факторов риска необходимо исключить генетическую тромбофилию после выздоровления.
  7. Антифосфолипидный синдром следует исключить раньше и независимо от возраста в случае высокоподозрительных клинических и лабораторных проявлений (тромбоз, возникающий на фоне гепаринотерапии, или необъяснимое удлинение активированного частичного тромбопластинового времени).
×

Об авторах

Виктория Омаровна Бицадзе

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)

Автор, ответственный за переписку.
Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-код: 5930-0859

д.м.н., профессор

Россия, 119991, Москва, ул. Трубецкая, д. 8-2

Джамиля Хизриевна Хизроева

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)

Email: jamatotu@gmail.com
ORCID iD: 0000-0002-0725-9686
SPIN-код: 8225-4976

д.м.н., профессор

Россия, Москва

Александр Давидович Макацария

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)

Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-код: 7538-2966

д.м.н., академик РАН

Россия, Москва

Екатерина Викторовна Слуханчук

Российский научный центр хирургии им. акад. Б.В. Петровского

Email: beloborodova@rambler.ru
ORCID iD: 0000-0001-7441-2778
SPIN-код: 7423-8944

к.м.н., доцент

Россия, Москва

Мария Владимировна Третьякова

ООО «Лечебный Центр»

Email: tretyakova777@yandex.ru
ORCID iD: 0000-0002-3628-0804

к.м.н., доцент

Россия, Москва

Джузеппе Риццо

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Римский Университет Тор Вергата

Email: giuseppe.rizzo@uniroma2.it
ORCID iD: 0000-0002-5525-4353

д.м.н., профессор

Россия, Москва; Рим

Жан-Кристоф Гриc

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Университет Монпелье

Email: jean.christophe.gris@chu-nimes.fr
ORCID iD: 0000-0002-9899-9910

д.м.н., профессор

Франция, Москва; Монпелье

Исмаил Элалами

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Медицинский Университет Сорбонна, Университетский Госпиталь Тенон

Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368

д.м.н., профессор

Франция, Москва; Париж

Владимир Николаевич Серов

Научный центр акушерства, гинекологии и перинатологии им. академика В.И. Кулакова

Email: v_serov@oparina4.ru
ORCID iD: 0000-0003-2976-7128

д.м.н., академик РАН

Россия, Москва

Андрей Сергеевич Шкода

Городская клиническая больница № 67 им. Л.А. Ворохобова

Email: 67gkb@mail.ru
ORCID iD: 0000-0002-9783-1796

д.м.н.

Россия, Москва

Наталья Викторовна Самбурова

Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)

Email: nsamburova@bk.ru
ORCID iD: 0000-0002-4564-8439
SPIN-код: 9084-7676

к.м.н., доцент

Россия, Москва

Список литературы

  1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844−847. doi: 10.1111/jth.14768.
  2. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020. Online ahead of print. doi: 10.1111/jth.14810.
  3. Lippi G, Plebani M, Henry MB. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145−148. doi: 10.1016/j.cca.2020.03.022.
  4. Lin G-L, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018;9:2147. doi: 10.3389/fimmu.2018.02147.
  5. Hussain NY, Uriel A, Mammen C, Bonington A. Disseminated herpes simplex infection during pregnancy, rare but important to recognise. Qatar Med J. 2014;(1):61–64. doi: 10.5339/qmj.2014.11.
  6. Goodman ZD, Ishak KG, Sesterhenn IA. Herpes simplex hepatitis in apparently immunocompetent adults. Am J Clin Pathol. 1986;85(6):694–699. doi: 10.1093/ajcp/85.6.694.
  7. Escobar M, Nieto AJ, Loaiza-Osorio S, et al. Pregnant women hospitalized with chikungunya virus infection, Colombia, 2015. Emerg Infect Dis. 2017;23(11):1777–1783. doi: 10.3201/eid2311.170480.
  8. Acosta CD, Harrison DA, Rowan K, et al. Maternal morbidity and mortality from severe sepsis: a national cohort study. BMJ Open. 2016;6(8):e012323. doi: 10.1136/bmjopen-2016-012323.
  9. Sauerbrei A, Wutzler P. Herpes simplex and varicella-zoster virus infections during pregnancy: current concepts of prevention, diagnosis and therapy. Part 2: Varicella-zoster virus infections. Med Microbiol Immunol. 2007;196:95–102. doi: 10.1007/s00430-006-0032-z.
  10. Acosta CD, Knight M, Lee HC, et al. The continuum of maternal sepsis severity: incidence and risk factors in a population-based cohort study. PLoS ONE. 2013;8:e67175. doi: 10.1371/journal.pone.0067175.
  11. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980−2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–1544. doi: 10.1016/s0140-6736(16)31012-1.
  12. Acosta CD, Harrison DA, Rowan K, et al. Maternal morbidity and mortality from severe sepsis: a national cohort study. BMJ Open. 2016;6(8):e012323. doi: 10.1136/bmjopen-2016-012323.
  13. Mason KL, Aronoff DM. Postpartum group a Streptococcus sepsis and maternal immunology. Am J Reprod Immunol. 2012;67(2):91–100. doi: 10.1111/j.1600-0897.2011.01083.x.
  14. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221(1):80–87. doi: 10.1111/j.1749-6632.2010.05938.x.
  15. Benster B, Wood EJ. Immunoglobulin levels in normal pregnancy and pregnancy complicated by hypertension. J Obstet Gynaecol Br Commonw. 1970;77(6):518–522. doi: 10.1111/j.1471-0528.1970.tb03559.x.
  16. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–433. doi: 10.1111/j.1600-0897.2010.00836.x.
  17. Di Mascio D, Khalil A, Saccone G, et al. Outcome of Coronavirus spectrum infections (SARS, MERS, COVID -19) during pregnancy: a systematic review and meta-analysis. Online ahead of print. Am J Obstet Gynecol MFM. 2020;100107. doi: 10.1016/j.ajogmf.2020.100107.
  18. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet. 2014;383(9927):1503−1516. doi: 10.1016/S0140-6736(13)61048-X.
  19. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033−1034. doi: 10.1016/S0140-6736(20)30628-0.
  20. Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020;102538. doi: 10.1016/j.autrev.2020.102538.
  21. Seguin A, Galicier L, Boutboul D, et al. Pulmonary involvement in patients with hemophagocytic lymphohistiocytosis. Chest. 2016;149(5):1294–1301. doi: 10.1016/j.chest.2015.11.004.
  22. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497−506. doi: 10.1016/S0140-6736(20)30183-5.
  23. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. Online ahead of print. 2020;1−3. doi: 10.1007/s00134-020-05991-x.
  24. Nicastri E, Petrosillo N, Bartoli AT, et al. National institute for the infectious diseases “l. spallanzani” irccs. recommendations for COVID-19 clinical management. Inf Diseas Rep. 2020;12(1):8543. doi: 10.4081/idr.2020.8543.
  25. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immun Canc. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9.
  26. Eloseily E, Weiser P, Eloseily EM, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis Arthritis Rheum. 2020;72(2):326−334. doi: 10.1002/art.41103.
  27. Honore PM, Hoste E, Molnár Z, et al. Cytokine removal in human septic shock: where are we and where are we going? Ann Intensive Care. 2019;9(1):56. doi: 10.1186/s13613-019-0530-y.
  28. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30304-4.
  29. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400−402. doi: 10.1016/S1473-3099(20)30132-8.
  30. Belizna C, Pregnolato F, Abad S, et al. HIBISCUS: Hydroxychloroquine for the secondary prevention of thrombotic and obstetrical events in primary antiphospholipid syndrome. Autoimmun Rev. 2018;17(12):1153−1168. doi: 10.1016/j.autrev.2018.05.012.
  31. Torigoe M, Sakata K, Ishii A, et al. Hydroxychloroquine efficiently suppresses inflammatory responses of human class-switched memory B cells via Toll-like receptor 9 inhibition. Clin Immunol. 2018;195:1−7. doi: 10.1016/j.clim.2018.07.003.
  32. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0.
  33. Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci. 2015;2015:507151. doi: 10.1155/2015/507151.
  34. Bernard GR, Vincent JL, Laterre PF, et al. Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699−709. doi: 10.1056/NEJM200103083441001.
  35. Davidson BL, Geerts WH, Lensing AW. Low-dose heparin for severe sepsis. N Engl J Med. 2002;347(13):1036−1037. doi: 10.1056/NEJM200209263471316.
  36. Wen WX, Lee SY, Siang R, Ry K. Repurposing pentoxifylline for the treatment of fibrosis: an overview. Adv Ther. 2017;34(6):1245–1269. doi: 10.1007/s12325-017-0547-2.
  37. Romanelli RG, Caligiuri A, Carloni V, et al. Effect of pentoxifylline on the degradation of procollagen type I produced by human hepatic stellate cells in response to transforming growth factor‐β1. Br J Pharmacol. 1997;122(6):1047−1054. doi: 10.1038/sj.bjp.0701484.
  38. Yamashita CM, Dolgonos L, Zemans RL, et al. Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am J Pathol. 2011;179(4):1733–1745. doi: 10.1016/j.ajpath.2011.06.041.
  39. Liu X, Li Z, Liu S, et al. Therapeutic effects of dipyridamole on COVID-19 patients with coagulation dysfunction. Med Rxiv. 2020. doi: 10.1101/2020.02.27.20027557.
  40. Etulain J, Martinod K, Wong SL, et al. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126(2):242–246. doi: 10.1182/blood-2015-01-624023.
  41. Inui S, Fujikawa A, Jitsu M, et al. Chest CT findings in cases from the cruise ship “Diamond Princess” with Coronavirus Disease 2019 (COVID-19). Radiology: Cardiothoracic imaging. 2020;2(2):e204002. doi: 10.1148/ryct.2020200110.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2020



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах