МОЛЕКУЛЯРНЫЕ СИСТЕМЫ РЕГУЛИРОВАНИЯ ФОРМИРОВАНИЯ БИОПЛЕНОК БАКТЕРИЙ PSEUDOMONAS AERUGINOSA
- Авторы: Манзенюк О.Ю.1, Фирстова В.В.1, Мухина Т.Н.1, Шемякин И.Г.1
-
Учреждения:
- ФБУН "Государственный научный центр прикладной микробиологии и биотехнологии"
- Выпуск: Том 73, № 4 (2018)
- Страницы: 244-251
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ МИКРОБИОЛОГИИ
- Дата публикации: 28.08.2018
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/1010
- DOI: https://doi.org/10.15690/vramn1010
- ID: 1010
Цитировать
Полный текст
Аннотация
В настоящее время внутрибольничные инфекции, обусловленные бактериями Pseudomonas аeruginosa, продолжают оставаться актуальной проблемой ввиду устойчивости этого микроорганизма к широкому спектру антибактериальных препаратов и способности формировать биопленки, которые в 1000 раз менее чувствительны к воздействию антибиотиков, нежели свободноживущие (планктонные) культуры. Формирование биопленок P. aeruginosa регулируется коммуникационной системой «чувство кворума» (quorum sensing, QS), которая находится под контролем ингибиторов системы (QSIs). Важную роль в формировании биопленок играет внеклеточная ДНК (eDNA), структурный полианионный полимер, что само по себе является уникальным свойством, поскольку роль генетического носителя информации в данном случае не применима. Формирование биопленок P. aeruginosa регулируется также внутренними сигнальными молекулами c-di-GMP и каскадом киназ Gac/Rsm. В обзоре дано описание молекулярных механизмов действия ингибиторов сигнальных молекул системы QS, а также соединений, модулирующих сигналы QS.
Об авторах
Оксана Юрьевна Манзенюк
ФБУН "Государственный научный центр прикладной микробиологии и биотехнологии"
Автор, ответственный за переписку.
Email: macebarron2013@gmail.com
ORCID iD: 0000-0002-8641-8517
Кандидат медицинских наук, ведущий инженер-микробиолог лаборатории молекулярной биологии.
142279, Московская обл., Серпуховский район, п. Оболенск.
SPIN-код: 6871-5381
Россия
Виктория Валерьевна Фирстова
ФБУН "Государственный научный центр прикладной микробиологии и биотехнологии"
Email: victoria1@mai.ru
ORCID iD: 0000-0002-9898-9894
Доктор биологических наук, руководитель лаборатории молекулярной биологии.
142279, Московская обл., Серпуховский район, п. Оболенск.
SPIN-код: 9166-9151
РоссияТатьяна Николаевна Мухина
ФБУН "Государственный научный центр прикладной микробиологии и биотехнологии"
Email: cecile98@rambler.ru
ORCID iD: 0000-0001-5829-0512
Кандидат биологических наук, старший научный сотрудник отдела коллекционных культур.
142279, Московская обл., Серпуховский район, п. Оболенск.
SPIN-код: 6858-5052
Россия
Игорь Георгиевич Шемякин
ФБУН "Государственный научный центр прикладной микробиологии и биотехнологии"
Email: shemyakin@obolensk.org
ORCID iD: 0000-0001-9667-1674
Доктор биологических наук, профессор, заместитель директора по научной работе.
142279, Московская обл., Серпуховский район, п. Оболенск.
SPIN-код: 3180-1459
РоссияСписок литературы
- Arivett BA, Ream DC, Fiester SE, et al. Draft genome sequences of Pseudomonas aeruginosa isolates from wounded military personne. Genome Announc. 2016;4(4)e00829-16. doi: 10.1128/genomeA.00829-16.
- Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000;2(9):1051−1060. doi: 10.1016/s1286-4579(00)01259-4.
- Bergey DH, Holt JG. Bergey’s manual of determinative bacteriology. 9th ed. Baltimore: Williams & Wilkins; 1994.
- World Health Organization. Antibacterial agents in clinical development. An analysis of the antibacterial clinical development pipeline, including tuberculosis. Geneva: World Health Organization; 2017.
- cdc. gov [Internet]. Antibiotic Resistance Threats in the United States, 2013. Report. pp. 69−71. [cited 2018 Aug 10]. Available from: https://www.cdc.gov/drugresistance/threat-report-2013/index.html.
- Høiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322−332. doi: 10.1016/j.ijantimicag.2009.12.011.
- Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 1998;4(4):551−560. doi: 10.3201/eid0404.980405.
- Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol. 1995;49:711−745. doi: 10.1146/annurev.mi.49.100195.003431.
- Захарова Ю.А. Гнойно-септическая заболеваемость новорожденных при различных формах эпидемиологического наблюдения (выборочные исследования). // Медицинский алфавит. ― 2015. ― Т.1. ― №6 ― C. 15−18.
- Шагинян И.А., Чернуха М.Ю., Зигангирова Н.А., Гинцбург А.Л. Изучение действия субингибирующих концентраций антибиотиков на экспрессию генов, регулирующих продукцию факторов патогенности у бактерий комплекса Burkholderia cepacia и Pseudomonas aeruginosa. // Молекулярная генетика, микробиология и вирусология. ― 2005. ― №2 ― С. 13−16.
- Jacoby GA. Properties of an R plasmid in Pseudomonas aeruginosa producing amikacin (BB-K8), butirosin, kanamycin, tobramycin, and sisomicin resistance. Antimicrob Agents Chemother. 1974;6(6):807−810. doi: 10.1128/aac.6.6.807.
- Дзюбак С.Т. Механизм действия экзотоксина Pseudomonas aeruginosa на макроорганизм (экспериментальные исследования) // Журнал микробиологии. ― 1984. ― №3 ― С. 35−39.
- Gilbert P, McBain A. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev. 2003;16(2):189−208. doi: 10.1128/CMR.16.2.189-208.2003.
- Duan K, Surette MG. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol. 2007;189(13):4827−4836. doi: 10.1128/JB.00043-07.
- Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280(5361):295−298. doi: 10.1126/science.280.5361.295.
- O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30(2):295−304. doi: 10.1046/j.1365-2958.1998.01062.x.
- Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005;13(1):20−26. doi: 10.1016/j.tim.2004.11.006.
- Webb JS, Thompson LS, James S, et al. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol. 2003;185(15):4585−4592. doi: 10.1128/jb.185.15.4585-4592.2003.
- Плакунов В.К., Мартьянов С.В., Тетенева Н.А., Журина М.В. Управление формированием микробных биопленок: анти- и пробиопленочные агенты. // Микробиология. ― 2017. ― Т.86. ― №4 ― С. 402−420.
- Banks MK, Bryers JD. Bacterial species dominance within binary culture biofilm. Appl Environ Microbiol. 1991;57(7):1974−1979.
- Allesen-Holm M, Barken KB, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006;59(4):1114–1128. doi: 10.1111/j.1365-2958.2005.05008.x.
- Barken KB, Pamp SJ, Yang L, et al. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2008;10(9):2331−2343. doi: 10.1111/j.1462-2920.2008.01658.x.
- Hentzer M, Eberl L, Givskov M. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms. 2005;2(1):37–61. doi: 10.1017/s1479050505001699.
- Hentzer M, Wu H, Andersen JB, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003;22(15):3803−3815. doi: 10.1093/emboj/cdg366.
- Purevdorj B, Costerton JW, Stoodley P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2002;68(9):4457−4464. doi: 10.1128/aem.68.9.4457-4464.2002.
- Bernal P, Llamas MA. Promising biotechnological applications of antibiofilm polysaccharides. Microb Biotechnol. 2012;5(6):670−673. doi: 10.1111/j.1751-7915.2012.00359.x.
- Colvin KM, Irie Y, Tart CS, et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol. 2012;14(8):1913−1928. doi: 10.1111/j.1462-2920.2011.02657.x.
- Shak S, Capon DJ, Hellmiss R, et al. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A. 1990;87(23):9188−9192. doi: 10.1073/pnas.87.23.9188.
- Chiang WC, Nilsson M, Jensen PØ, et al. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2013;57(5):2352−2361. doi: 10.1128/AAC.00001-13.
- Das T, Kutty SK, Tavallaie R, et al. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm. Sci Rep. 2015;5:8398. doi: 10.1038/srep08398.
- Haba E, Pinazo A, Jauregui O, et al. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng. 2003;81(3):316−322. doi: 10.1002/bit.10474.
- Alhede M, Bjarnsholt T, Jensen PØ, et al. Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology. 2009;155(Pt 11):3500−3508. doi: 10.1099/mic.0.031443-0.
- Lee J, Wu J, Deng Y, et al. А сell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol. 2013;9(5):339−343. doi: 10.1038/nchembio.1225.
- Bjarnsholt T, Jensen PØ, Jakobsen TH, et al. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One. 2010;5(4):e10115. doi: 10.1371/journal.pone.0010115.
- Christen M, Christen B, Folcher M, et al. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem. 2005;280(35):30829−30837. doi: 10.1074/jbc.M504429200.
- Düvel J, Bertinetti D, Möller S, et al. A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods. 2012;88(2):229−236. doi: 10.1016/j.mimet.2011.11.015.
- Borlee BR, Goldman AD, Murakami K, et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol. 2010;75(4):827−842. doi: 10.1111/j.1365-2958.2009.06991.x.
- Oglesby LL, Jain S, Ohman DE. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology. 2008;154(Pt 6):1605−1615. doi: 10.1099/mic.0.2007/015305-0.
- Kay E, Humair B, Dénervaud V, et al. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol. 2006;188(16):6026−6033. doi: 10.1128/JB.00409-06.
- Goodman AL, Merighi M, Hyodo M, et al. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev. 2009;23(2):249−259. doi: 10.1101/gad.1739009.
- Chambonnier G, Roux L, Redelberger D, et al. The hybrid histidine kinase LadS forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa. PLoS Genet. 2016;12(5):e1006032. doi: 10.1371/journal.pgen.1006032.
- Mougous JD, Cuff ME, Raunser S, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 2006;312(5779):1526−1530. doi: 10.1126/science.1128393.
- Frangipani E, Visaggio D, Heeb S, et al. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol. 2014;16(3):676−688. doi: 10.1111/1462-2920.12164.
- Ventre I, Goodman AL, Vallet-Gely I, et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A. 2006;103(1):171−176. doi: 10.1073/pnas.0507407103.
- Moscoso JA, Jaeger T, Valentini M, et al. The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa. J Bacteriol. 2014;196(23):4081−4088. doi: 10.1128/JB.01850-14.
- Hentzer M, Riedel K, Rasmussen TB, et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology. 2002;148(Pt 1):87−102. doi: 10.1099/00221287-148-1-87.
- Read R, Kumar N. Production of Furanones. United States patent 20070032666 A1. 2007 Feb 8.
- Zou Y, Nair SK. Molecular basis for the recognition of structurally distinct autoinducer mimics by the Pseudomonas aeruginosa LasR quorum-sensing signaling receptor. Chem Biol. 2009;16(9):961−970. doi: 10.1016/j.chembiol.2009.09.001.
- Yang L, Rybtke MT, Jakobsen TH, et al. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother. 2009;53(6):2432−2443. doi: 10.1128/AAC.01283-08.
- Rasmussen TB, Bjarnsholt T, Skindersoe ME, et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol. 2005;187(5):1799−1814. doi: 10.1128/jb.187.5.1799-1814.2005.
- Bjarnsholt T, Jensen PØ, Rasmussen TB, et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology. 2005;151(Pt 12):3873−3880. doi: 10.1099/mic.0.27955-0.
- Pratt DA. Garlic and other alliums. The lore and the science. By Eric Block. Angew Chem Int Ed. 2010;49(40):7162. doi: 10.1002/anie.201004351.
- Jakobsen TH, Warming AN, Vejborg RM, et al. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep. 2017;7(1):9857. doi: 10.1038/s41598-017-09886-8.
- Jakobsen TH, Bragason SK, Phipps RK, et al. Food as a source for quorum sensing inhibitors: Iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol. 2012;78(7):2410−2421. doi: 10.1128/AEM.05992-11.
- Tan SY, Liu Y, Chua SL, et al. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound iberin on Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(11):6648−6659. doi: 10.1128/AAC.02620-13.
- Skindersoe ME, Alhede M, Phipps R, et al. Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(10):3648−3663. doi: 10.1128/AAC.01230-07.
- Taylor PK, Van Kessel ATM, Colavita A, et al. A novel small RNA is important for biofilm formation and pathogenicity in Pseudomonas aeruginosa. PLoS One. 2017;12(8):e0182582. doi: 10.1371/journal.pone.0182582.
- Lieberman OJ, Orr MW, Wang Y, Lee VT. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol. 2014;9(1):183−192. doi: 10.1021/cb400485k.
- Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO. Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem Sci. 2016;7(9):6238−6244. doi: 10.1039/c6sc02103d.