Molecular Genetic Characteristic of Pulmonary Tuberculosis Associated with ABCB1 Gene Expression of Multidrugresistance Protein P-gp
- Authors: Ergeshov A.E.1,2, Erokhina M.V.1,3, Pavlova E.N.3, Lepekha L.N.1, Tarasov R.V.1, Tarasova E.K.1
-
Affiliations:
- Central Tuberculosis Research Institute
- Russian University of Medicine
- Lomonosov Moscow State University
- Issue: Vol 79, No 5 (2024)
- Pages: 463–473
- Section: PHTHISIOLOGY: CURRENT ISSUES
- Published: 14.01.2025
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/17984
- DOI: https://doi.org/10.15690/vramn17984
- ID: 17984
Cite item
Abstract
Background. Tuberculous inflammation is mediated by a complex molecular signaling pathway, the analysis of which makes it possible to identify promising biomarkers and targets for the development of new diagnostic, prognostic and pharmacological approaches in order to improve the effectiveness of anti-tuberculosis chemotherapy. Determining the relationship between key inflammatory cytokines, the multidrug-resistant protein P-gp and the activity of specific inflammation in the surgical material of patients with pulmonary tuberculosis may prove to be a novel tool in the development of pathogenetic therapy and personalized medicine.
Aims — to characterize molecular and genetic profiles of tuberculomas and identify genes that correlate with the expression of the ABCB1 gene of the P-gp protein in the surgical material of patients with pulmonary tuberculosis. Research objectives: 1) to obtain molecular and genetic characteristics of tuberculosis by real-time PCR and compare it with the activity of tuberculous inflammation; 2) to carry out a correlation analysis between the expression of the ABCB1 gene and key cytokines of the tuberculosis process: IL-6, IL-10, IFN-γ, TGF-β, TNF-α, IL-1β.
Methods. A prospective cohort study was conducted on the basis of the FSBI CTRI. The object of the study was the surgical material of 35 patients diagnosed with multiple pulmonary tuberculomas. Histological examination methods were used for the morphological assessment of the surgical material. A real-time quantitative PCR method was used to analyze gene expression. Statistical processing was performed using the GraphPad Prism Version 7.04 software package (GraphPad Software, USA). The data is presented as a median with an interquartile range. The nonparametric Mann–Whitney U-test was used to compare the two groups. All p-values were two-sided and p < 0.05 was considered statistically significant. The correlation between the variables was estimated using the Spearman correlation coefficient. The correlation analysis was carried out in the Microsoft Office Excel 2010 Software.
Results. The study revealed that the highest level of expression of ABCB1 gene of the P-gp protein is observed in tuberculomas with high activity of tuberculous inflammation, and its expression is correlated with the expression of the IL6 gene (p < 0.001) and the expression of the IL10 gene (p < 0.01). Tuberculomas of this group are also characterized by higher expression of the TGFB1, TNF and IL1B genes, compared with the group of moderate activity of specific inflammation.
Conclusions. The data obtained indicate that in addition to pro-/anti-inflammatory cytokines, the P-gp protein plays an important role in the pathogenesis of tuberculous inflammation, especially with its high activity. Further clarification of the P-gp role in tuberculous inflammation may be an important step for the development of new approaches to treat tuberculosis using methods of HDT and personalized medicine.
Keywords
Full Text
About the authors
Atadzhan E. Ergeshov
Central Tuberculosis Research Institute; Russian University of Medicine
Email: cniit@ctri.ru
ORCID iD: 0000-0002-2494-9275
SPIN-code: 8372-1666
д.м.н., профессор, член-корреспондент РАН
Россия, Moscow; MoscowMaria V. Erokhina
Central Tuberculosis Research Institute; Lomonosov Moscow State University
Author for correspondence.
Email: masha.erokhina@gmail.com
ORCID iD: 0000-0002-7256-4679
SPIN-code: 8033-0860
PhD in Biology, Associate Professor
Россия, Moscow; MoscowEkaterina N. Pavlova
Lomonosov Moscow State University
Email: guchia@gmail.com
ORCID iD: 0000-0001-9498-1142
SPIN-code: 8311-7260
PhD in Biology
Россия, MoscowLarisa N. Lepekha
Central Tuberculosis Research Institute
Email: lep3@yandex.ru
ORCID iD: 0000-0002-6894-2411
SPIN-code: 6228-8382
PhD in Biology, Professor
Россия, MoscowRuslan V. Tarasov
Central Tuberculosis Research Institute
Email: etavnai@yandex.ru
SPIN-code: 4245-1560
MD, PhD
Россия, MoscowEkaterina K. Tarasova
Central Tuberculosis Research Institute
Email: shalioto6@gmail.com
ORCID iD: 0000-0003-0438-7233
SPIN-code: 5661-8640
Master of Biology
Россия, MoscowReferences
- Global Tuberculosis Report. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (accessed: 25.06.2023).
- Стерликов С.А., Русакова Л.И., Обухова О.В. Методология оценки расходов на выявление, диагностику и лечение туберкулеза с множественной и широкой лекарственной устойчивостью // Менеджер здравоохранения. — 2019. — № 1. — С. 56–63. [Sterlikov SA, Rusakova LI, Obukhova OV. Methodology for estimating the costs of identifying, diagnosing and treating tuberculosis with multiple and extensive drug resistance. Manager Zdravoochranenia. 2019;1:56–63. (In Russ.)]
- Koehler N, Andres S, Merker M, et al. Pretomanid-resistant tuberculosis. J Infect. 2023;86(5):520–524. doi: https://doi.org/10.1016/j.jinf.2023.01.039
- Ismail NA, Omar SV, Moultrie H, et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect Dis. 2022;22(4):496–506. doi: https://doi.org/10.1016/s1473-3099(21)00470-9
- Cubillos-Angulo JM, Nogueira BMF, Arriaga MB, et al. Host-directed therapies in pulmonary tuberculosis: Updates on anti-inflammatory drugs. Front Med (Lausanne). 2022;9:970408. doi: https://doi.org/10.3389/fmed.2022.970408
- Ahmed S, Raqib R, Guðmundsson GH, et al. Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics (Basel). 2020;9(1):21. doi: https://doi.org/10.3390/antibiotics9010021
- Wallis RS, Ginindza S, Beattie T, et al. Lung and blood early biomarkers for host-directed tuberculosis therapies: Secondary outcome measures from a randomized controlled trial. PLoS One. 2022;17(2):e0252097. doi: https://doi.org/10.1371/journal.pone.0252097
- Wishart DS, Knox C, Guo AC, et al. Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72. doi: https://doi.org/10.1093/nar/gkj067
- van der Deen M, Timens W, Timmer-Bosscha H, et al. Reduced inflammatory response in cigarette smoke exposed Mrp1/Mdr1a/1b deficient mice. Respir Res. 2007;8(1):49. doi: https://doi.org/10.1186/1465-9921-8-49
- Ерохина М.В., Лепеха Л.Н. Участие белков МЛУ клеток лtгкого в снижении эффективности действия противотуберкулtзных препаратов // Вестник ЦНИИТ. — 2020. —№ 1. — С. 5–20. [Erokhina MV, Lepekha LN. The impact of MDR associated proteins of lung cells on reducing effectiveness of TB drugs. Bulletin of the Central Research Institute of Telecommunications. 2020;1:5–20. (In Russ.)] doi: https://doi.org/10.7868/S258766782001001X
- Báez-Saldaña R, López-Arteaga Y, Bizarrón-Muro A, et al. A novel scoring system to measure radiographic abnormalities and related spirometric values in cured pulmonary tuberculosis. PLoS One. 2013;8(11):e78926. doi: https://doi.org/10.1371/journal.pone.0078926
- Bost P, Giladi A, Liu Y, et al. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients. Cell. 2020;181(7):1475–1488.e12. doi: https://doi.org/10.1016/j.cell.2020.05.006
- Saunders BM, Frank AA, Orme IM, et al. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun. 2000;68(6):3322–3326. doi: https://doi.org/10.1128/iai.68.6.3322-3326.2000
- Nagabhushanam V, Solache A, Ting LM, et al. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-gamma. J Immunol. 2003;171(9):4750–4757. doi: https://doi.org/10.4049/jimmunol.171.9.4750
- Bohrer AC, Tocheny C, Assmann M, et al. Cutting Edge: IL-1R1 Mediates Host Resistance to Mycobacterium tuberculosis by Trans-Protection of Infected Cells. J Immunol. 2018;201(6):1645–1650. doi: https://doi.org/10.4049/jimmunol.1800438
- Lyadova IV, Tsiganov EN, Kapina MA, et al. In Mice, Tuberculosis Progression Is Associated with Intensive Inflammatory Response and the Accumulation of Gr-1dim Cells in the Lungs. PLoS One. 2010;5(5):e10469. doi: https://doi.org/10.1371/journal.pone.0010469
- Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol. 2011;4(3):252–260. doi: https://doi.org/10.1038/mi.2011.13
- Cohen SB, Gern BH, Delahaye JL, et al. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host Microbe. 2018;24(3):439–446.e4. doi: https://doi.org/10.1016/j.chom.2018.08.001
- He D, Bai F, Zhang S, et al. High incidence of tuberculosis infection in rheumatic diseases and impact for chemoprophylactic prevention of tuberculosis activation during biologics therapy. Clin Vaccine Immunol. 2013;20(6):842–847. doi: https://doi.org/10.1128/cvi.00049-13
- Tsao TCY, Hong Jh, Li LF et al. Imbalances between tumor necrosis factor-α and its soluble receptor forms, and interleukin-1β and interleukin-1 receptor antagonist in bal fluid of cavitary pulmonary tuberculosis. Chest. 2000;117(1):103–109. doi: https://doi.org/10.1378/chest.117.1.103
- Kumar NP, Moideen K, Banurekha VV, et al. Plasma Proinflammatory Cytokines Are Markers of Disease Severity and Bacterial Burden in Pulmonary Tuberculosis. Open Forum Infect Dis. 2019;6(7):ofz257. doi: https://doi.org/10.1093/ofid/ofz257
- Master SS, Rampini SK, Davis AS, et al. Mycobacterium tuberculosis Prevents Inflammasome Activation. Cell Host Microbe. 2008;3(4):224–232. doi: https://doi.org/10.1016/j.chom.2008.03.003
- Winchell CG, Mishra BB, Phuah JY, et al. Evaluation of IL-1 Blockade as an Adjunct to Linezolid Therapy for Tuberculosis in Mice and Macaques. Front Immunol. 2020;11:891. doi: https://doi.org/10.3389/fimmu.2020.00891
- Moore KW, de Waal Malefyt R, Coffman RL, et al. Interleukin-10 and the Interleukin-10 Receptor. Annu Rev Immunol. 2001;19(1):683–765. doi: https://doi.org/10.1146/annurev.immunol.19.1.683
- Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170–181. doi: https://doi.org/10.1038/nri2711
- Almeida AS, Lago PM, Boechat N, et al. Tuberculosis is associated with a down-modulatory lung immune response that impairs Th1-type immunity. J Immunol. 2009;183(1):718–731. doi: https://doi.org/10.4049/jimmunol.0801212
- Verbon A, Juffermans N, Van Deventer SJ, et al. Serum concentrations of cytokines in patients with active tuberculosis (TB) and after treatment. Clin Exp Immunol. 1999;115(1):110–113. doi: https://doi.org/10.1046/j.1365-2249.1999.00783.x
- Bonecini-Almeida MG, Ho JL, Boéchat N, et al. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infect Immun. 2004;72(5):2628–2634. doi: https://doi.org/10.1128/IAI.72.5.2628-2634.2004
- Huard RC, Chitale S, Leung M, et al. The mycobacterium tuberculosis complex-restricted gene cfp32 encodes an expressed protein that is detectable in tuberculosis patients and is positively correlated with pulmonary interleukin-10. Infect Immun. 2003;71(12):6871–6883. doi: https://doi.org/10.1128/IAI.71.12.6871-6883.2003
- Azaiz MB, Jemaa AB, Sellami W, et al. Deciphering the balance of IL-6/IL-10 cytokines in severe to critical COVID-19 patients. Immunobiology. 2022;227(4):152236. doi: https://doi.org/10.1016/j.imbio.2022.152236
- Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295. doi: https://doi.org/10.1101/cshperspect.a016295
- Pavlova EN, Lepekha LN, Rybalkina EYu, et al. High and Low Levels of ABCB1 Expression Are Associated with Two Distinct Gene Signatures in Lung Tissue of Pulmonary TB Patients with High Inflammation Activity. Int J Mol Sci. 2023;24(19):14839. doi: https://doi.org/10.3390/ijms241914839
- Niemand C, Nimmesgern A, Haan S, et al. Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J Immunol. 2003;170(6):3263–3272. doi: https://doi.org/10.4049/jimmunol.170.6.3263
- Wang H, Lafdil F, Kong X, et al. Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int J Biol Sci. 2011;7(5):536–550. doi: https://doi.org/10.7150/ijbs.7.536
- Wu Q, Hossfeld A, Gerberick A, et al. Effect of Mycobacterium tuberculosis Enhancement of Macrophage P-Glycoprotein Expression and Activity on Intracellular Survival During Antituberculosis Drug Treatment. J Infect Dis. 2019;220(12):1989–1998. doi: https://doi.org/10.1093/infdis/jiz405
- Liu J, Zhou F, Chen Q, et al. Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-κb pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Sci Rep. 2015;5:13558. doi: https://doi.org/0.1038/srep13558
- Pavlova EN, Erokhina MV, Rybalkina EYu, et al. The Effect of Rifampicin on the Induction of MDR1/P-gp Activity in Proinflammatory Human Macrophages. Antibiot Khimioter = Antibiotics and Chemotherapy. 2022;67(3–4):16–22. (In Russ.). doi: https://doi.org/10.37489/0235-2990-2022-67-3-4-16-22
- Gupta S, Tyagi S, Bishai WR. Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrob Agents Chemother. 2015;59(1):673–676. doi: https://doi.org/10.1128/AAC.04019-1
- Louw GE, Warren RM, Gey van Pittius NC, et al. Rifampicin reduces susceptibility to ofloxacin in rifampicin-resistant Mycobacterium tuberculosis through efflux. Am J Respir Crit Care Med. 2011;184(2):269–276. doi: https://doi.org/10.1164/rccm.201011-1924OC
- van der Deen M, Timens W, Timmer-Bosscha H, et al. Reduced inflammatory response in cigarette smoke exposed Mrp1/Mdr1a/1b deficient mice. Respir Res. 2007;8(1):49. doi: https://doi.org/10.1186/1465-9921-8-49
- Drach J, Gsur A, Hamilton G, et al. Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-gamma in normal human T lymphocytes. Blood. 1996;88(5):1747–1754.
- Abualsunun WA, Sahin C, Cummins CL, et al. Essential role of STAT-3 dependent NF-κB activation on IL-6-mediated downregulation of hepatic transporters. Eur J Pharm Sci. 2020;143:105151. doi: https://doi.org/10.1016/j.ejps.2019.105151
- Chen HK, Chen YL, Wang CY, et al. ABCB1 Regulates Immune Genes in Breast Cancer. Breast Cancer (Dove Med Press). 2023;15:801–811. doi: https://doi.org/10.2147/BCTT.S421213
- Kooij G, Backer R, Koning JJ et al. P-Glycoprotein acts as an immunomodulator during neuroinflammation. PLoS One. 2009;4(12):e8212. doi: https://doi.org/10.1371/journal.pone.0008212
- Hu B, Zou T, Qin W, et al. Inhibition of EGFR Overcomes Acquired Lenvatinib Resistance Driven by STAT3–ABCB1 Signaling in Hepatocellular Carcinoma. Cancer Res. 2022;82(20):3845–3857. doi: https://doi.org/10.1158/0008-5472.CAN-21-4140
- Zhao L, Bin S, He HL, et al. Sodium butyrate increases P-gp expression in lung cancer by upregulation of STAT3 and mRNA stabilization of ABCB1. Anticancer Drugs. 2018;29(3):227–233. doi: https://doi.org/10.1097/cad.0000000000000588
- Woodahl EL, Ho RJ. The role of MDR1 genetic polymorphisms in interindividual variability in P-glycoprotein expression and function. Curr Drug Metab. 2004;5(1):11–19. doi: https://doi.org/10.2174/1389200043489108
- Naidoo A, Chirehwa M, Ramsuran V, et al. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics. 2019;20(4):225–240. doi: https://doi.org/10.2217/pgs-2018-0166
- Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenetics Genomics. 2011;21(3):152–161. doi: https://doi.org/10.1097/FPC.0b013e3283385a1c
- Boni FG, Hamdi I, Koundi LM, et al. Cytokine storm in tuberculosis and IL-6 involvement. Infect Genet Evol. 2022;97:105166. doi: https://doi.org/10.1016/j.meegid.2021.105166
- Cantini F, Nannini C, Niccoli L, et al. Risk of Tuberculosis Reactivation in Patients with Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Receiving Non-Anti-TNF-Targeted Biologics. Mediators Inflamm. 2017;2017:8909834. doi: https://doi.org/10.1155/2017/8909834