Cover Page

Cite item


Understanding the molecular genetic features of gastric cancer (GC) and principally the functioning of signaling cascades involved in its occurrence and development is determining for identifying the most promising genes for targeted therapy. On this basis, development and consequent implementation of effective drugs and treatment regimens is conducted. The inductors of signaling paths, the main one of which is the mTOR pathway, and the functioning of the pathway are considered in details. mTOR inductors (angiogenesis factors, epidermal growth factor and their receptors) are most actively studied as therapeutic targets. Particular attention is paid to the consideration of stimulation and development of lymphangiogenesis where not all genes are discovered and examined yet. The possibility of achieving a significant therapeutic effect with simultaneous inhibition of the action of genes of angio- and lymphangiogenesis is considered. The review covers the administered target drugs and pharmaceuticals under investigation for GC therapy, including immunotherapy. The review provides details on the simultaneous activation of several genes ― potential targets of therapy and possible interactions in the development of the tumor process. As a result the combined effect of the simultaneous action of two or more factors can be detected. The possibility of maintaining the activated signaling cascade when one of the activated receptors is blocked in consequence of the action of another expressed receptor is also considered. The article presents information on development of drugs affecting several targets and on effectiveness of combined therapy with different targeted drugs. Essential effectiveness of GC therapy can be achieved by personified treatment including application of molecular classification. The review discusses the prognostic value of target and other genes expression, as well as GC subtypes according molecular classification.

About the authors

Fatima M. Kipkeeva

Research Centre for Medical Genetics

Author for correspondence.
ORCID iD: 0000-0003-4778-9726

1, Moskvorechie street, 115522 Moscow.

SPIN-код: 5902-4070

Russian Federation

Tatiana A. Muzaffarova

Research Centre for Medical Genetics

ORCID iD: 0000-0002-2345-2056

MD, PhD.

1, Moskvorechie street, 115522 Moscow.

SPIN-код: 4657-2770

Russian Federation

Maxim P. Nikulin

NN Blokhin Russian Cancer Research Centre

ORCID iD: 0000-0002-9608-4696

MD, PhD.


SPIN-код: 9455-5566

Pavel V. Apanovich

Research Centre for Medical Genetics

ORCID iD: 0000-0001-6576-5512

1, Moskvorechie street, 115522 Moscow.

SPIN-код: 6748-9211

Alexander V. Karpukhin

Research Centre for Medical Genetics

ORCID iD: 0000-0002-7001-9116


1, Moskvorechie street, 115522 Moscow.

SPIN-код: 2929-1276


  1. Ajani JA, Lee J, Sano T, et al. Gastric adenocarcinoma. Nat Rev Dis Primers. 2017;3:17036. doi: 10.1038/nrdp.2017.36.
  2. Dicken BJ, Bigam DL, Cass C, et al. Gastric adenocarcinoma: review and considerations for future directions. Ann Surg. 2005;241(1):27−39. doi: 10.1097/01.sla.0000149300.28588.23.
  3. Akagi T, Shiraishi N, Kitano S. Lymph node metastasis of gastric cancer. Cancers (Basel). 2011;3(2):2141−2159. doi: 10.3390/cancers3022141.
  4. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–364. doi: 10.1016/S0092-8674(00)80108-7.
  5. Cao Y. Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer. 2005;5(9):735−743. doi: 10.1038/nrc1693
  6. Terman BI, Dougher-Vermazen M, Carrion ME, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 1992;187(3):1579−1586. doi: 10.1016/0006-291X(92)90483-2.
  7. Yoon HH, Bendell JC, Braiteh FS, et al. Ramucirumab combined with FOLFOX as front-line therapy for advanced esophageal, gastroesophageal junction, or gastric adenocarcinoma: a randomized, double-blind, multicenter Phase II trial. Ann Oncol. 2016;27(12):2196−2203. doi: 10.1093/annonc/mdw423.
  8. Joukov V, Sorsa T, Kumar V, et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 1997;16(13):3898−3911. doi: 10.1093/emboj/16.13.3898.
  9. Wang X, Chen X, Fang J, Yang C. Overexpression of both VEGF-A and VEGF-C in gastric cancer correlates with prognosis, and silencing of both is effective to inhibit cancer growth. Int J Clin Exp Pathol. 2013;6(4):586−597.
  10. Yang C, Zhang ZD. The expression of VEGF-C and it’s receptor VEGFR-3 correlates with lymph node metastasis in gastric cancer. Open J Gastroenterol. 2014;4(12):357−377 doi: 10.4236/ojgas.2014.412050.
  11. Yang Y, Andersson P, Hosaka K. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385. doi: 10.1038/ncomms11385.
  12. Djordjevic S, Driscoll PC. Targeting VEGF signalling via the neuropilin co-receptor. Drug Discov Today. 2013;18(9−10):447−455. doi: 10.1016/j.drudis.2012.11.013.
  13. Xin Y, Li J, Wu J, et al. Pharmacokinetic and pharmacodynamic analysis of circulating biomarkers of anti-NRP1, a novel antiangiogenesis agent, in two phase I trials in patients with advanced solid tumors. Clin Cancer Res. 2012;18(21):6040−6048. doi: 10.1158/1078-0432.CCR-12-1652.
  14. Herzog Y, Kalcheim C, Kahane N, et al. Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev. 2001;109(1):115−119. doi: 10.1016/S0925-4773(01)00518-4.
  15. Favier B, Alam A, Barron P, et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood. 2006;108(4):1243−1250. doi: 10.1182/blood-2005-11-4447.
  16. Kim WH, Lee SH, Jung MH, et al. Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF. Exp Cell Res. 2009;315(13):2154−2164. doi: 10.1016/j.yexcr.2009.04.018.
  17. Yamashita-Kashima Y, Fujimoto-Ouchi K, Yorozu K, et al. Biomarkers for antitumor activity of bevacizumab in gastric cancer models. BMC Cancer. 2012;12:37. doi: 10.1186/1471-2407-12-37.
  18. Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets. 2009;9(5):639−651. doi: 10.2174/156800909789057006.
  19. Kubo H, Cao R, Brakenhielm E, et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A. 2002;99(13):8868−873. doi: 10.1073/pnas.062040199.
  20. Cao R, Ji H, Feng N, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci U S A. 2012;109(39):15894−15899. doi: 10.1073/pnas.1208324109.
  21. Kilgour E, Su X, Zhan P, et al. Prevalence and prognostic significance of FGF receptor 2 (FGFR2) gene amplification in Caucasian and Korean gastric cancer cohorts. J Clin Oncol. 2012;30(Suppl):4124.
  22. Liu N, Zhang J, Sun S, et al. Expression and clinical significance of fibroblast growth factor 1 in gastric adenocarcinoma. Onco Targets Ther. 2015;8:615−621. doi: 10.2147/OTT.S79204.
  23. Catenacci DV, Enzinger PC, Tesfaye AA, et al. FIGHT: A phase 3 randomized, double-blind, placebo controlled study evaluating (bemarituzumab) FPA144 and modified FOLFOX6 (mFOLFOX6) in patients with previously untreated advanced gastric and gastroesophageal cancer with a dose finding phase 1 lead-in. J Clin Oncol. 2018;36(Suppl):TPS4135.
  24. Katz LH, Likhter M, Jogunoori W, et al. TGF-β signaling in liver and gastrointestinal cancers. Cancer Lett. 2016;379(2):166−172. doi: 10.1016/j.canlet.2016.03.033.
  25. Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22−31. doi: 10.1016/j.pharmthera.2014.11.001.
  26. de Gramont A, Faivre S, Raymond E. Novel TGF-β inhibitors ready for prime time in onco-immunology. Oncoimmunology. 2016;6(1):e1257453. doi: 10.1080/2162402X.2016.1257453.
  27. Yang L. TGFbeta, a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr Mol Med. 2010;10(4):374−380. doi: 10.2174/156652410791317039.
  28. Ganesh K, Massagué J. TGF-b inhibition and immunotherapy: checkmate. Immunity. 2018;48(4):626−628. doi: 10.1016/j.immuni.2018.03.037.
  29. Abrahao-Machado LF, Scapulatempo-Neto C. HER2 testing in gastric cancer: an update. World J Gastroenterol. 2016;22(19):4619−4625. doi: 10.3748/wjg.v22.i19.4619.
  30. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687−697. doi: 10.1016/S0140-6736(10)61121-X.
  31. Begnami MD, Fukuda E, Fregnani JH, et al. Prognostic implications of altered human epidermal growth factor receptors (HERs) in gastric carcinomas: HER2 and HER3 are predictors of poor outcome. J Clin Oncol. 2011;29(22):3030−3036. doi: 10.1200/JCO.2010.33.6313.
  32. Cao GD, Chen K, Chen B, Xiong MM. Positive prognostic value of HER2-HER3 co-expression and p-mTOR in gastric cancer patients. BMC Cancer. 2017;17(1):841. doi: 10.1186/s12885-017-3851-y.
  33. Tabernero J, Hoff PM, Shen L, et al. Anti-cancer agents & biologic therapy oesophageal cancer gastric cancer prostate cancer gastrointestinal cancers. Ann Oncol. 2017;28(Suppl 5):v209−v268. doi: 10.1093/annonc/mdx369.
  34. Integration of trastuzumab, with or without pertuzumab, into perioperative chemotherapy of her2- positive stomach cancer: the innovation trial (EORTC-1203-GITCG). Oncol Res Treat. 2016;39(3):153−154. doi: 10.1159/000444702.
  35. Hofheinz R, Hausen G, Borchert K. Perioperative trastuzumab and pertuzumab in combination with FLOT versus FLOT alone for HER2 positive resectable esophagogastric adenocarcinoma: Petrarca — a phase II trial of the German AIO. Journal of Clinical Oncology. 2017. 2017:TPS4133.
  36. Riquelme I, Saavedra K, Espinoza JA, et al. Molecular classification of gastric cancer: towards a pathway-driven targeted therapy. Oncotarget. 2015;6(28):24750−24779. doi: 10.18632/oncotarget.4990.
  37. Catenacci DV, Tebbutt NC, Davidenko I, et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(11):1467−1482. doi: 10.1016/S1470-2045(17)30566-1.
  38. Anestis A, Zoi I, Karamouzis MV. Current advances of targeting HGF/c-Met pathway in gastric cancer. Ann Transl Med. 2018;6(12):247. doi: 10.21037/atm.2018.04.42.
  39. Stommel JM, Kimmelman AC, Ying H, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318(5848):287−290. doi: 10.1126/science.1142946.
  40. Chen H, Guan R, Lei Y, et al. Lymphangiogenesis in gastric cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis. BMC Cancer. 2015;15:103. doi: 10.1186/s12885-015-1109-0.
  41. Jebali A, Dumaz N. The role of RICTOR downstream of receptor tyrosine kinase in cancers. Mol Cancer. 2018;17(1):39. doi: 10.1186/s12943-018-0794-0.
  42. O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500−1508. doi: 10.1158/0008-5472.CAN-05-2925.
  43. Kim ST, Kim SY, Klempner SJ. Rapamycin-insensitive companion of mTOR (RICTOR) amplification defines a subset of advanced gastric cancer and is sensitive to AZD2014-mediated mTORC1/2 inhibition. Ann Oncol. 2017;28(3):547−554. doi: 10.1093/annonc/mdw669.
  44. Matsueda S, Graham DY. Immunotherapy in gastric cancer. World J Gastroenterol. 2014;20(7):1657−1666. doi: 10.3748/wjg.v20.i7.1657.
  45. Boger C, Behrens HM, Mathiak M, et al. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget. 2016;7(17):24269−24283. doi: 10.18632/oncotarget.8169.
  46. Alsina M, Moehler M, Hierro C, et al. Immunotherapy for gastric cancer: a focus on immune checkpoints target oncol. Target Oncol. 2016;11(4):469−477. doi: 10.1007/s11523-016-0421-1.
  47. Magalhães H, Fontes-Sousa M, Hindawi MM. Review article immunotherapy in advanced gastric cancer: an overview of the emerging strategies. Can J Gastroenterol Hepatol. 2018;2018:2732408. doi: 10.1155/2018/2732408.
  48. Taieb J, Moehler M, Boku N, et al. Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: current status and future perspectives. Cancer Treat Rev. 2018;66:104−113. doi: 10.1016/j.ctrv.2018.04.004.
  49. Fuchs CS, D o i T, Jang RW, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4(5):e180013. doi: 10.1001/jamaoncol.2018.0013.
  50. Bang YJ, Ruiz EY, Van Cutsem E. Phase 3, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment for patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol. Forthcoming. 2018. doi: 10.1093/annonc/mdy264.
  51. Shitara K, Özgüroğlu M, Bang YJ, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392(10142):123−133. doi: 10.1016/S0140-6736(18)31257-1.
  52. Bai J, Gao Z, Li X, et al. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PDL1 blockade. Oncotarget. 2017;8(66):110693−110707. doi: 10.18632/oncotarget.22690.
  53. Voron T, Marcheteau E, Pernot S, et al. Control of the immune response by pro-angiogenic factors. Front Oncol. 2014;4:70. doi: 10.3389/fonc.2014.00070.
  54. Catenacci DV, Park H, Uronis HE. Margetuximab (M) plus pembrolizumab (P) in ERBB2-amplified PD-L1+ gastroesophageal adenocarcinoma (GEA) post trastuzumab (T). J Clin Oncol. 2018;36(Suppl):4030.
  55. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202−209. doi: 10.1038/nature13480.
  56. Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449−456. doi: 10.1038/nm.3850.
  57. Lee J, Kim K-M. Biomarkers for gastric cancer: molecular classification revisited. Precision Future Medicine. 2017;1(2):59−68. doi: 10.23838/pfm.2017.00079.
  58. Bykov VJ, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18(2):89−102. doi: 10.1038/nrc.2017.109.
  59. Karki R, Ferlini C. Class III beta-tubulin, drug resistance, therapeutic approaches in cancers. Atlas Genet Cytogenet Oncol Haematol. 2014;18(11):865−871. doi: 10.4267/2042/54174.
  60. Weberpals J, Garbuio K, O’Brien A, et al. The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer. Int J Cancer. 2009;124(4):806−815. doi: 10.1002/ijc.23987.
  61. Li SC, Ma R, Wu JZ, et al. Delineation of gastric cancer subtypes by co-regulated expression of receptor tyrosine kinases and chemosensitivity genes. Am J Transl Res. 2015;7(8):1429−1439.
  62. Hsu LC, White RL. BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci U S A. 1998;95(22):12983−12988. doi: 10.1073/pnas.95.22.12983.
  63. Mullan PB, Quinn JE, Gilmore PM, et al. BRCA1 and GADD45 mediated G2/M cell cycle arrest in response to antimicrotubule agents. Oncogene. 2001;20(43):6123−6131. doi: 10.1038/sj.onc.1204712.
  64. He Q, Zhang M, Zhang J, et al. Predictive value of BRCA1 expression on the efficacy of chemotherapy based on anti-microtubule agents: a pooled analysis across different malignancies and agents. Ann Transl Med. 2016;4(6):110. doi: 10.21037/atm.2016.03.27.
  65. Chen W, Wang J, Li X, et al. Prognostic significance of BRCA1 expression in gastric cancer. Med Oncol. 2013;30(1):423. doi: 10.1007/s12032-012-0423-5.
  66. Wei KK, Jiang L, Wei YY, et al. The prognostic value of ERCC1 expression in gastric cancer patients treated with platinum-based chemotherapy: a meta-analysis. Tumour Biol. 2014;35(9):8721−8731. doi: 10.1007/s13277-014-2128-1.
  67. Iqbal S, McDonough S, Lenz HJ, et al. A randomized phase II pilot study prospectively evaluating treatment for patients based on ERCC1 (Excision Repair Cross-Complementing 1) for advanced/metastatic esophageal, gastric, or gastroesophageal junction cancer: SWOG S1201. J Clin Oncol. 2017;35(Suppl):4009. doi: 10.1200/JCO.2017.35.15_suppl.4009.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2018 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies