THE PERSONALIZED APPROACH TO ANTIHYPERTENSIVE THERAPY DURING PREGNANCY IN TERMS OF CLINICAL PHARMACOGENETICS

Cover Page


Cite item

Full Text

Abstract

The right drug at the right dose administered to a patient in time is the goal which all medical specialists aim at when prescribing medicines to patients. Pregnancy is a condition when the principle of personalized pharmacotherapy is especially relevant. Due to the developing fetus and the occurring changes in the maternal organism, the selection of drug therapy during pregnancy is especially difficult for a clinician. This issue is tightly intertwined with clinical pharmacogenetics since the genetic code of a woman that determines the activity of the liver cytochrome, the fetus-placental barrier, and renal clearance contributes to the peculiarities of the drug metabolism during pregnancy. Additional data provides the opportunities to form therapeutic models and to determine the ways of personifying pharmacotherapy in pregnancy. The purpose of this review is to summarize the available data on the pharmacogenetics of antihypertensive drugs used during pregnancy.

About the authors

I. V. Ignatko

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: iradocent@mail.ru
ORCID iD: 0000-0002-9945-3848

Irina V. Ignatko -MD, PhD, Professor.

Moscow

Россия

L. A. Strizhakov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: strizhakov76@mail.ru
ORCID iD: 0000-0002-2291-6453

Leonid A. Strizhakov - MD, PhD, Professor.

Moscow

Россия

V. S. Florova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: Florova.violetta@gmail.com
ORCID iD: 0000-0003-1483-8819

Violetta S. FrolovaMD.

Moscow

Россия

A. L. Martirosova

City Clinical Hospital № 29 named after N.E. Bauman

Email: martirosova@inbox.ru
ORCID iD: 0000-0002-5763-7593

Alina L. Martirosova – MD.

Moscow

References

  1. Andrew MA, Easterling TR, Carr DB, et al. Amoxicillin pharmacokinetics in pregnant women: modeling and simulations of dosage strategies. Clin Pharmacol Ther. 2007;81(4):547–556. doi: 10.1038/sj.clpt.6100126.
  2. Buchanan ML, Easterling TR, Carr DB, et al. Clonidine pharmacokinetics in pregnancy. Drug Metab Dispos. 2008;37(4):702–705. doi: 10.1124/dmd.108.024984.
  3. Unadkat JD, Wara DW, Hughes MD, et al. Pharmacokinetics and safety of indinavir in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother. 2006;51(2):783–786. doi: 10.1128/aac.00420-06.
  4. Beigi RH, Han K, Venkataramanan R, et al. Pharmacokinetics of oseltamivir among pregnant and nonpregnant women. Am J Obstet Gynecol. 2011;204(6):S84–S88. doi: 10.1016/j.ajog.2011.03.002.
  5. Hebert MF, Carr DB, Anderson GD, et al. Pharmacokinetics and pharmacodynamics of atenolol during pregnancy and postpartum. J Clin Pharmacol. 2005;45(1):25–33. doi: 10.1177/0091270004269704.
  6. Haas DM, Hebert MF, Soldin OP, et al. Pharmacotherapy and pregnancy: highlights from the Second International Conference for Individualized Pharmacotherapy in Pregnancy. Clin Transl Sci. 2009;2(6):439–443. doi: 10.1111/j.1752-8062.2009.00166.x.
  7. Drugs in pregnancy and lactation: improved benefit-risk information. FDA/CDER SBIA Chronicles [Internet]. 2015 Jan [cited 2018 Apr 12];(1):[about 2 p.]. Available from: https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/SmallBusinessAssistance/UCM431132.pdf.
  8. Pregnancy, lactation, and reproductive potential: labeling for human prescription drug and biological products ― content and format guidance for industry [Internet]. U.S. Department of health and human services food and drug administration; 2014. 21 p [cited 2018 May 12]. Available from: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM425398.pdf.
  9. Акушерство. Национальное руководство / Под ред. Г.М. Савельевой, Г.Т. Сухих, В.Н. Серова, В.Е. Радзинского. ― М.: ГЭОТАР-Медиа; 2015. ― 1080 с.
  10. Webster LM, Conti-Ramsden F, Seed PT, et al. Impact of antihypertensive treatment on maternal and perinatal outcomes in pregnancy complicated by chronic hypertension: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6(5):e005526. doi: 10.1161/JAHA.117.005526.
  11. Сокова Е.А., Чилова Р.А., Проклова Г.Ф., и др. Особенности метаболизма лекарственных средств во время беременности // Вестник современной клинической медицины. ― 2016. ― Т.9. ― №5 ― С. 70–75.
  12. Загородникова К.А., Бурбелло А.Т., Покладова М.В. Механизмы повреждающего действия лекарств на плод и значение фармакогенетики для безопасности лекарств у беременных // Медицинская генетика. ― 2015. ― Т.14. ― №12 ― С. 3–10.
  13. Feghali MN, Mattison DR. Clinical therapeutics in pregnancy. J Biomed Biotechnol. 2011;2011:783528. doi: 10.1155/2011/783528.
  14. Hypertension in pregnancy: diagnosis and management. Clinical guideline. NICE; 2010. 49 р.
  15. Hypertension in pregnancy. Practice Guideline. Washington, DC: American College of Obstetricians and Gynecologists; 2013. 100 p.
  16. Гипертензивные расстройства во время беременности, в родах и послеродовом периоде. Преэклампсия. Эклампсия. Федеральные клинические рекомендации. ― М.; 2015. ― 23 c.
  17. Mattison DR. Clinical pharmacology during pregnancy. Academic Press; 2013. 471 p.
  18. Персонализированная медицина: клинико-фармакологические аспекты / Под ред. В.Г. Кукеса. ― М.; 2014.
  19. Haas DM, D’Alton M. Pharmacogenetics and other reasons why drugs can fail in pregnancy: higher dose or different drug? Obstet Gynecol. 2012;120(5):1176–1179.
  20. Tracy TS, Venkataramanan R, Glover DD, et al. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–639. doi: 10.1016/j.ajog.2004.08.030.
  21. Pacanowski MA, Johnson JA. PharmGKB submission update: IX. ADRB1 gene summary. Pharmacol Rev. 2007;59(1):2–4. doi: 10.1124/pr.59.1.6.
  22. Litonjua AA, Gong L, Duan QL, et al. Very important pharmacogene summary ADRB2. Pharmacogenet Genomics. 2010;20(1):64–69. doi: 10.1097/FPC.0b013e328333dae6.
  23. Johnson J. β1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74(1):44–52. doi: 10.1016/s0009-9236(03)00068-7.
  24. Sofowora GG, Dishy V, Muszkat M, et al. A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clin Pharmacol Ther. 2003;73(4):366–371. doi: 10.1016/s0009-9236(02)17734-4.
  25. Wu D, Li G, Deng M, et al. Associations between ADRB1 and CYP2D6 gene polymorphisms and the response to β-blocker therapy in hypertension. J Int Med Res. 2015;43(3):424–434. doi: 10.1177/0300060514563151.
  26. Сычев Д.А., Игнатьев И.В., Раменская Г.В., и др. Фармакогенетические исследования системы биотрансформации и транспортеров для персонализации фармакотерапии в кардиологии (российский опыт). Сообщение второе: фармакогенетические исследования CYP2D6 // Клиническая фармакология и фармакотерапия. ― 2007. ― Т.16. ― №4 ― С. 62–66.
  27. Hebert MF. Impact of pregnancy on pharmacokinetics of medications. J Popul Ther Clin Pharmacol. 2013:20(3):e350–e357.
  28. Hogstedt S, Lindberg B, Peng DR, et al. Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther. 1985;37(6):688–692. doi: 10.1038/clpt.1985.114.
  29. Власкина М.В. Влияние полиморфизма гена CYP2D6 на фармакодинамические эффекты метопролола у больных ИБС, стенокардией напряжения II−III ФК: Автореф. дис. ... канд. мед. наук. ― Саратов; 2009. ― 24 c.
  30. Goryachkina K, Burbello A, Boldueva S, et al. CYP2D6 is a major determinant of metoprolol disposition and effects in hospitalized Russian patients treated for acute myocardial infarction. Eur J Clin Pharmacol. 2008;64(12):1163–1173. doi: 10.1007/s00228-008-0525-3.
  31. Поздняков Н.О. Клинико-фармакологическое значение генов СYP2D6, ENOS и AGTR2 у пациентов с различными формами ишемической болезни сердца: Дис. … канд. мед. наук. ― Ярославль; 2016. ― 180 c.
  32. Ryu RJ, Eyal S, Easterling TR, et al. Pharmacokinetics of metoprolol during pregnancy and lactation. J Clin Pharmacol. 2016;56(5):581–589. doi: 10.1002/jcph.631.
  33. Pariente G, Leibson T, Carls A, et al. Pregnancy-associated changes in pharmacokinetics: a systematic review. PLoS Med. 2016;13(11):e1002160. doi: 10.1371/journal.pmed.1002160.
  34. Williams P, Morgan. The role of genetics in pre-eclampsia and potential pharmacogenomic interventions. Pharmgenomics Pers Med. 2012:37. doi: 10.2147/pgpm.s23141.
  35. Silva PS, Lacchini R, Gomes Vde A, Tanus-Santos JE. Pharmacogenetic implications of the eNOS polymorphisms for cardiovascular action drugs. Arq Bras Cardiol. 2011;96(2):e27–34. doi: 10.1590/s0066-782x2011000200017.
  36. Haas DM. Pharmacogenetics and individualizing drug treatment during pregnancy. Pharmacogenomics. 2014;15(1):69–78. doi: 10.2217/pgs.13.228.
  37. Carvalho TM, Cavalli Rde C, Cunha SP, et al. Influence of gestational diabetes mellitus on the stereoselective kinetic disposition and metabolism of labetalol in hypertensive patients. Eur J Clin Pharmacol. 2010;67(1):55–61. doi: 10.1007/s00228-010-0896-0.
  38. Liljedahl U, Karlsson J, Melhus H, et al. A microarray minisequencing system for pharmacogenetic profiling of antihypertensive drug response. Pharmacogenetics. 2003;13(1):7–17. doi: 10.1097/00008571-200301000-00003.
  39. Haas DM, Quinney SK, Clay JM, et al. Nifedipine pharmacokinetics are influenced by CYP3A5 genotype when used as a preterm labor tocolytic. Am J Perinatol. 2013;30(4):275–281. doi: 10.1055/s-0032-1323590.
  40. Bremer T, Man A, Kask K, Diamond C. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension. Pharmacogenomics. 2006;7(3):271–279. doi: 10.2217/14622416.7.3.271.
  41. Beitelshees AL, Navare H, Wang D, et al. CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circ Cardiovasc Genet. 2009;2(4):362–370. doi: 10.1161/CIRCGENETICS.109.857839.
  42. Beitelshees AL, Gong Y, Wang D, et al. KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST). Pharmacogenet Genomics. 2007;17(9):719–729. doi: 10.1097/FPC.0b013e32810f2e3c.
  43. Lynch AI, Boerwinkle E, Davis BR, et al. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA. 2008;299(3):296–307. doi: 10.1001/jama.299.3.296. Erratum in JAMA. 2009;302(10):1057-8.
  44. Lakshman DK, Simon C, Ursula G, et al. Adverse drug interactions: a handbook for prescribers. 2nd ed. Boca-Raton, FL, USA: CRC Press Book; 2010. 199 p.
  45. Gupta M, Kaur H, Jajodia A, et al. Diverse facets of COMT: from a plausible predictive marker to a potential drug target for schizophrenia. Curr Mol Med. 2011;11(9):732–743. doi: 10.2174/156652411798062386.
  46. Duley L, Meher S, Jones L. Drugs for treatment of very high blood pressure during pregnancy. Cochrane Database Syst Rev. 2013;(7):CD001449. doi: 10.1002/14651858.CD001449.pub3.
  47. Barnea ER, Fakih H, Oelsner G, et al. Effect of antihypertensive drugs on catechol-O-methyltransferase and monoamine oxidase activity in human term placental explants. Gynecol Obstet Invest. 1986;21(3):124–130. doi: 10.1159/000298941.
  48. Hodges LM, Markova SM, Chinn LW, et al. Very important pharmacogene summary. Pharmacogenet Genomics. 2011;21(3):152–161. doi: 10.1097/FPC.0b013e3283385a1c.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies