Cardiovascular and oncological diseases — focus on modifiable risk factors and modern pathogenetic aspects
- Authors: Buziashvili J.I.1, Stilidi I.S.2, Mackeplishvili S.T.1, Asymbekova E.U.1, Tugeeva E.F.1, Artamonova E.V.2,3,4, Akildzhonov F.R.1, Rakhmanzhanov A.A.1, Golukhova E.Z.1
-
Affiliations:
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
- N.N. Blokhin National Medical Research Center of Oncology
- Pirogov Russian National Research Medical University
- Moscow Regional Research and Clinical Institute (MONIKI)
- Issue: Vol 78, No 2 (2023)
- Pages: 132-140
- Section: CARDIOLOGY AND CARDIOVASCULAR SURGERY: CURRENT ISSUES
- URL: https://vestnikramn.spr-journal.ru/jour/article/view/8359
- DOI: https://doi.org/10.15690/vramn8359
Cite item
Abstract
Currently, in modern medicine, there has been a sharp increase in interest in the combined pathology of cardiovascular diseases (CVD) with other nosologies, such as diabetes mellitus, chronic kidney disease, and oncopathology. Over the past decades, there have been large positive shifts in survival in this cohort of patients. An integral specialty of cardio-oncology is rapidly developing, which is aimed at improving the results of treatment of oncological patients. Due to increased life expectancy and improved long-term prognosis in cancer patients, in particular, the adverse effects of anticancer therapy have attracted great attention from researchers. The causal relationship between cancer and CVD can be partly explained by a common profile of modifiable and non-modifiable risk factors. There is also strong evidence that a systemic inflammatory response is a common pathophysiological determinant of cancer and CVD. General risk factors for development and progression, as well as pathogenetic mechanisms, contribute to high mortality rates. Increasing knowledge of pathophysiological mechanisms will help elucidate the general molecular aspects of carcinogenesis and cardiovascular disease. This review presents general modifiable risk factors and current pathogenetic aspects of cardiovascular and oncological diseases.
Keywords
Full Text

About the authors
Jurij I. Buziashvili
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Email: buziashvili@yandex.ru
ORCID iD: 0000-0001-7016-7541
SPIN-code: 2856-3356
MD, PhD, Professor, Academician of the RAS
Russian Federation, MoscowIvan S. Stilidi
N.N. Blokhin National Medical Research Center of Oncology
Email: director@ronc.ru
ORCID iD: 0000-0002-5229-8203
SPIN-code: 9622-7106
MD, PhD, Professor, Academician of the RAS
Russian Federation, MoscowSimon T. Mackeplishvili
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Email: simonmats@yahoo.com
ORCID iD: 0000-0002-5670-167X
SPIN-code: 2827-1317
MD, PhD, Professor, associate member RAS
Russian Federation, MoscowEl’mira U. Asymbekova
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Email: elmasym@gmail.com
ORCID iD: 0000-0002-5422-2069
SPIN-code: 8108-3978
MD, PhD
Russian Federation, MoscowElvina F. Tugeeva
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Email: Elvina.tugeeva@yandex.ru
ORCID iD: 0000-0003-1751-4924
SPIN-code: 3662-8775
MD, PhD
Russian Federation, MoscowElena V. Artamonova
N.N. Blokhin National Medical Research Center of Oncology; Pirogov Russian National Research Medical University; Moscow Regional Research and Clinical Institute (MONIKI)
Email: artamonovae@mail.ru
ORCID iD: 0000-0001-7728-9533
SPIN-code: 2483-6309
MD, PhD
Russian Federation, Moscow; Moscow; MoscowFirdavsdzhon R. Akildzhonov
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Author for correspondence.
Email: firdavs96_tths@mail.ru
ORCID iD: 0000-0002-1675-4216
Russian Federation, Moscow
Alier A. Rakhmanzhanov
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Email: alier.raxmanzhanov@mail.ru
ORCID iD: 0000-0002-7800-9078
Russian Federation, Moscow
Elena Z. Golukhova
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Email: egoluhova@bakulev.ru
ORCID iD: 0000-0002-6252-0322
SPIN-code: 9334-5672
MD, PhD, Professor, Academician of the RAS
Russian Federation, MoscowReferences
- Sturgeon K, Deng L, Bluethmann S. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J. 2019;40(48):3889–3897. doi: https://doi.org/10.1093/eurheartj/ehz766
- Ngo D, Williams T, Horder S. Factors Associated with Adverse Cardiovascular Events in Cancer Patients Treated with Bevacizumab. J Clin Med. 2020;9(8):2664. doi: https://doi.org/10.3390/jcm9082664
- Al-Kindi S, Oliveira G. Prevalence of Preexisting Cardiovascular Disease in Patients with Different Types of Cancer: The Unmet Need for Onco-Cardiology. Mayo Clin Proc. 2016;91(1):81–83. doi: https://doi.org/10.1016/j.mayocp.2015.09.009
- Han X, Zhou Y, Liu W. Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol. 2017;1(1):31. doi: https://doi.org/10.1038/s41698-017-0034-x
- Sung H, Ferlay J, Siegel R. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi: https://doi.org/10.3322/caac.21660
- Thun M, DeLancey J, Center M, et al. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100–110. doi: https://doi.org/10.1093/carcin/bgp263
- Nguyen P, Saito E, Katanoda K. Long-Term Projections of Cancer Incidence and Mortality in Japan and Decomposition Analysis of Changes in Cancer Burden, 2020–2054: An Empirical Validation Approach. Cancers (Basel). 2022;14(24):6076. doi: https://doi.org/10.3390/cancers14246076
- Васюк Ю.А., Гендлин Г.Е., Емелина Е.И. Согласованное мнение российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии // Российский кардиологический журнал. — 2021. — Т. 26. — № 9. — 4703. doi: https://doi.org/10.15829/1560-4071-2021-4703 [Vasyuk Yu, Gendlin G, Emelina EI. Consensus statement of Russian experts on the prevention, diagnosis and treatment of cardiotoxicity of anticancer therapy. Russian Journal of Cardiology. 2021;26(9):4703. (In Russ.)] doi: https://doi.org/10.15829/1560-4071-2021-4703
- Lyon A, López-Fernández T, Couch L. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–4361. doi: https://doi.org/10.1093/eurheartj/ehac244
- Khanna A, Pequeno P, Gupta S. Increased Risk of All Cardiovascular Disease Subtypes Among Childhood Cancer Survivors: Population-Based Matched Cohort Study. Circulation. 2019;140(12):1041–1043. doi: https://doi.org/10.1161/CIRCULATIONAHA.119.041403
- Clèries R, Ameijide A, Buxó M. Ten-Year Probabilities of Death Due to Cancer and Cardiovascular Disease among Breast Cancer Patients Diagnosed in North-Eastern Spain. Int J Environ Res Public Health. 2022;20(1):405. doi: https://doi.org/10.3390/ijerph20010405
- Zamorano J, Gottfridsson C, Asteggiano R. The cancer patient and cardiology. Eur J Heart Fail. 2020;22(12):2290–2309. doi: https://doi.org/10.1002/ejhf.1985
- Quoc Lam B, Shrivastava S, Shrivastava A, et al. The Impact of obesity and diabetes mellitus on pancreatic cancer: Molecular mechanisms and clinical perspectives. J Cell Mol Med. 2020;24(14):7706–7716. doi: https://doi.org/10.1111/jcmm.15413
- Krupa-Kotara K, Dakowska D. Impact of obesity on risk of cancer. Cent Eur J Public Health. 2021;29(1):38–44. doi: https://doi.org/10.21101/cejph.a5913
- Du X, Hidayat K, Shi B. Abdominal obesity and gastroesophageal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep. 2017;37(3):BSR20160474. doi: https://doi.org/10.1042/BSR20160474
- Shang L, Hattori M, Fleming G. Impact of post-diagnosis weight change on survival outcomes in Black and White breast cancer patients. Breast Cancer Res. 2021;23(1):18. doi: https://doi.org/10.1186/s13058-021-01397-9
- Tangvarasittichai S, Pongthaisong S, Tangvarasittichai O. Tumor Necrosis Factor-Α, Interleukin-6, C-Reactive Protein Levels and Insulin Resistance Associated with Type 2 Diabetes in Abdominal Obesity Women. Indian J Clin Biochem. 2016;31(1):68–74. doi: https://doi.org/10.1007/s12291-015-0514-0
- Poetsch M, Strano A, Guan K. Role of Leptin in Cardiovascular Diseases. Front Endocrinol (Lausanne). 2020;11:354. doi: https://doi.org/10.3389/fendo.2020.00354
- Ellulu M, Patimah I, Khaza’ai H, et al. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–863. doi: https://doi.org/10.5114/aoms.2016.58928
- Xu J, Lin H, Wu G, et al. IL-6/STAT3 Is a Promising Therapeutic Target for Hepatocellular Carcinoma. Front Oncol. 2021;11:760971. doi: https://doi.org/10.3389/fonc.2021.760971
- Eketunde A. Diabetes as a Risk Factor for Breast Cancer. Cureus. 2020;12(5):e8010. doi: https://doi.org/10.7759/cureus.8010
- Xu C, Zhu H, Zhu Y. Diabetes and cancer: Associations, mechanisms, and implications for medical practice. World J Diabetes. 2014;5(3):372–380. doi: https://doi.org/10.4239/wjd.v5.i3.372
- Hormati A, Hajrezaei Z, Jazi K, et al. Gastrointestinal and Pancratohepatobiliary Cancers: A Comprehensive Review on Epidemiology and Risk Factors Worldwide. Middle East J Dig Dis. 2022;14(1):5–23. doi: https://doi.org/10.34172/mejdd.2022.251
- Gu L, Ma G, Li C, et al. New insights into the prognosis of intraocular malignancy: Interventions for association mechanisms between cancer and diabetes. Front Oncol. 2022;12:958170. doi: https://doi.org/10.3389/fonc.2022.958170
- Travis R, Appleby P., Martin R. A Meta-analysis of Individual Participant Data Reveals an Association between Circulating Levels of IGF-I and Prostate Cancer Risk. Cancer Res. 2016;76(8):2288–2300. doi: https://doi.org/10.1158/0008-5472.CAN-15-1551
- Nounu A, Kar S, Relton C, Richmond R. Sex steroid hormones and risk of breast cancer: a two-sample Mendelian randomization study. Breast Cancer Res. 2022;24(1):66. doi: https://doi.org/10.1186/s13058-022-01553-9
- Ba Z, Xiao Y, He M. Risk Factors for the Comorbidity of Hypertension and Renal Cell Carcinoma in the Cardio-Oncologic Era and Treatment for Tumor-Induced Hypertension. Front Cardiovasc Med. 2022;9:810262. doi: https://doi.org/10.3389/fcvm.2022.810262
- El Hadri K, Smith R, Duplus E, El Amri C. Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging Therapeutic Target. Int J Mol Sci. 2021;23(1):77. doi: https://doi.org/10.3390/ijms23010077
- Angel-Korman A, Rapoport V, Leiba A. The Relationship between Hypertension and Cancer. Isr Med Assoc J. 2022;24(3):165–169.
- Grossman E, Messerli F, Boyko V, Goldbourt U. Is there an association between hypertension and cancer mortality? Am J Med. 2002;112(6):479–486. doi: https://doi.org/10.1016/s0002-9343(02)01049-5
- Skorupan N, Palestino Dominguez M, Ricci S, Alewine C. Clinical Strategies Targeting the Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel). 2022;14(17):4209. doi: https://doi.org/10.3390/cancers14174209
- Cedó L, Reddy S, Mato E, et al. HDL and LDL: Potential New Players in Breast Cancer Development. J Clin Med. 2019;8(6):853. doi: https://doi.org/10.3390/jcm8060853
- Larsson S, Carter P, Kar S. Smoking, alcohol consumption, and cancer: A mendelian randomisation study in UK Biobank and international genetic consortia participants. PLoS Med. 2020;17(7):e1003178. doi: https://doi.org/10.1371/journal.pmed.1003178
- Greten F, Grivennikov S. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019;51(1):27–41. doi: https://doi.org/10.1016/j.immuni.2019.06.025
- Perillo B, Di Donato M, Pezone A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203. doi: https://doi.org/10.1038/s12276-020-0384-2
- Ridker P. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ Res. 2016;118(1):145–156. doi: https://doi.org/10.1161/CIRCRESAHA.115.306656
- Johnson D, O’Keefe R, Grandis J. Targeting the IL-6/JAK/STAT3 signaling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234–248. doi: https://doi.org/10.1038/nrclinonc.2018.8
- Ya G, Ren W, Qin R, et al. Role of myeloid-derived suppressor cells in the formation of pre-metastatic niche. Front Oncol. 2022;12:975261. doi: https://doi.org/10.3389/fonc.2022.975261
- Crossman D, Rothman A. Interleukin-1 beta inhibition with canakinumab and reducing lung cancer-subset analysis of the canakinumab anti-inflammatory thrombosis outcome study trial (CANTOS). J Thorac Dis. 2018;10(Suppl 26):S3084–S3087. doi: https://doi.org/10.21037/jtd.2018.07.50
- Lust J, Lacy M, Zeldenrust S. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin Proc. 2009;84(2):114–122. doi: https://doi.org/10.4065/84.2.114
- Nguyen M, Bui K, Scholta T. Targeting interleukin 6 signaling by monoclonal antibody siltuximab on cholangiocarcinoma. J Gastroenterol Hepatol. 2021;36(5):1334–1345. doi: https://doi.org/10.1111/jgh.15307
- Kuo M, Chang S, Hsieh M. Colchicine Significantly Reduces Incident Cancer in Gout Male Patients: A 12-Year Cohort Study. Medicine (Baltimore). 2015;94(50):e1570. doi: https://doi.org/10.1097/MD.0000000000001570
- Carreira R, Lee P, Gottlieb R. Mitochondrial therapeutics for cardioprotection. Curr Pharm Des. 2011;17(20):2017–2035. doi: https://doi.org/10.2174/138161211796904777
- Roth K, Mambetsariev I, Kulkarni P, Salgia R. The Mitochondrion as an Emerging Therapeutic Target in Cancer. Trends Mol Med. 2020;26(1):119–134. doi: https://doi.org/10.1016/j.molmed.2019.06.009
- Bowman R, Busque L, Levine R. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–170. doi: https://doi.org/10.1016/j.stem.2018.01.011
- Poller W, Nahrendorf M, Swirski F. Hematopoiesis and Cardiovascular Disease. Circ Res. 2020;126(8):1061–1085. doi: https://doi.org/10.1161/CIRCRESAHA.120.315895
- Libby P, Sidlow R, Lin A. Clonal Hematopoiesis: Crossroads of Aging, Cardiovascular Disease, and Cancer: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;74(4):567–577. doi: https://doi.org/10.1016/j.jacc.2019.06.007
- Jaiswal S, Natarajan P, Silver A. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med. 2017;377(2):111–121. doi: https://doi.org/10.1056/NEJMoa1701719
- Senguttuvan N, Subramanian V, Venkatesan V, et al. Clonal hematopoiesis of indeterminate potential (CHIP) and cardiovascular diseases-an updated systematic review. J Genet Eng Biotechnol. 2021;19(1):105. doi: https://doi.org/10.1186/s43141-021-00205-3
- Pascual-Figal D, Bayes-Genis A, Díez-Díez M. Clonal Hematopoiesis and Risk of Progression of Heart Failure With Reduced Left Ventricular Ejection Fraction. J Am Coll Cardiol. 2021;77(14):1747–1759. doi: https://doi.org/10.1016/j.jacc.2021.02.028
Supplementary files
