Preview

Вестник Российской академии медицинских наук

Расширенный поиск

Реконструкция уретры с помощью технологий тканевой инженерии.

https://doi.org/10.15690/vramn771

Полный текст:

Аннотация

Стриктура уретры – заболевание характеризующиеся патологическим сужением мочеиспускательного канала. Лечение этого состояния зачастую требует хирургического вмешательства с использованием аутологичных графтов (трансплантатов) и лоскутов (уретропластика). Как правило, источниками графтов служат различные ткани самого пациента – генитальная и экстрагенитальная кожа, слизистая щеки, влагалищная оболочка яичка и др. Альтернативным, щадящим для пациента, подходом может быть использование технологии тканевой инженерии создания графта для уретропластики в лабораторных условиях с использованием аутологичных клеток пациента и биосовместимого матрикса (матрица, скаффолд, подложка). Данная статья описывает достижения тканевой инженерии в создании тканеинженерной конструкции уретры на сегодняшний день. В обзоре подробно рассказывается обо всех составных частях, необходимых для создания тканеинженерной конструкции уретры, описывается взгляд авторов на преимущества и недостатки различных альтернатив при выборе, как клеточного компонента, так и матрикса будущей конструкции. Представлен обзор доклинических и клинических исследований, проведенных в области тканевой инженерии уретры.

Об авторах

Игорь Алексеевич Васютин
Первый московский государственный медицинский университет имени И.М. Сеченова
Россия

Аспирант кафедры гистологии, цитологии и эмбриологии лечебного факультета, младший научный сотрудник Института регенеративной медицины.

Адрес: 119991, Москва, ул. Трубецкая, д. 8, стр. 2.

SPIN-код: 1872-8347



Алексей Валерьевич Люндуп
Первый Московский государственный медицинский университет им. И.М. Сеченова

Кандидат медицинских наук, заведующий отделом передовых клеточных технологий Института регенеративной медицины.

Адрес: 119991, Москва, ул. Трубецкая, д. 8, стр. 2

SPIN-код: 4954-3004



Андрей Зиновьевич Винаров
Первый Московский государственный медицинский университет им. И.М. Сеченова

Доктор медицинских наук, профессор, главный научный сотрудник НИИ уронефрологии и репродуктивного здоровья человека. 

Адрес: 119435, Москва, ул. Большая Пироговская, д. 2, стр. 1.

SPIN-код: 5174-2233



Денис Викторович Бутнару
Первый Московский государственный медицинский университет им. И.М. Сеченова

Кандидат медицинских наук, директор Института регенеративной медицины.

Адрес: 119991, Москва, ул. Трубецкая, д. 8, стр. 2.

SPIN-код: 2408-5133



Сергей Львович Кузнецов
Первый Московский государственный медицинский университет им. И.М. Сеченова

Доктор медицинских наук, профессор, член-корр. РАН, заведующий кафедрой гистологии, цитологии и эмбриологии лечебного факультета.

Адрес: 125009, Москва, ул. Моховая, д. 11, стр. 3.

SPIN-код: 3824-2646



Список литературы

1. Latini JM, McAninch JW, Brandes SB, et al. SIU/ICUD Consultation On Urethral Strictures: Epidemiology, etiology, anatomy, and nomenclature of urethral stenoses, strictures, and pelvic fracture urethral disruption injuries. Urology. 2014;83(3 Suppl):S1–7. doi: 10.1016/j.urology.2013.09.009.

2. Santucci RA, Joyce GF, Wise M. Male urethral stricture disease. J Urol. 2007;177(5):1667–1674. doi: 10.1016/j.juro.2007.01.041.

3. Lee YJ, Kim SW. Current management of urethral stricture. Korean J Urol. 2013;54(9):561–569. doi: 10.4111/kju.2013.54.9.561.

4. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12. doi: 10.1126/scitranslmed.3004890.

5. Atala A, Danilevskiy M, Lyundup A, et al. The potential role of tissue-engineered urethral substitution: clinical and preclinical studies. J Tissue Eng Regen Med. 2017;11(1):3–19. doi: 10.1002/term.2112.

6. Young B, Lowe JS, Steven A, Heath JW. Wheater’s functional histology: a text and colour atlas. 5th ed. Elsevier, Churchill Livingstone; 2006. 448 p.

7. Кузнецов С.Л., Мушкамбаров Н.Н. Гистология, цитология и эмбриология. Учебник для студентов медицинских ВУЗов. — М.: МИА; 2007. — 600 с. [Kuznetsov SL, Mushkambarov NN. Gistologiya, tsitologiya i embriologiya. Uchebnik dlya studentov meditsinskikh VUZov. Moscow: MIA; 2007. 600 p. (In Russ).]

8. Orabi H, AbouShwareb T, Zhang Y, et al. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol. 2013;63(3):531–538. doi: 10.1016/j.eururo.2012.07.041.

9. Fossum M, Skikuniene J, Orrego A, Nordenskjold A. Prepubertal follow-up after hypospadias repair with autologous in vitro cultured urothelial cells. Acta Paediatr. 2012;101(7):755–760. doi: 10.1111/j.1651-2227.2012.02659.x.

10. Raya-Rivera A, Esquiliano DR, Yoo JJ, et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377(9772):1175–1182. doi: 10.1016/s0140-6736(10)62354-9.

11. De Filippo RE, Kornitzer BS, Yoo JJ, Atala A. Penile urethra replacement with autologous cell-seeded tubularized collagen matrices. J Tissue Eng Regen Med. 2015;9(3):257–264. doi: 10.1002/term.1647.

12. Bhargava S, Patterson JM, Inman RD, et al. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol. 2008;53(6):1263–1271. doi: 10.1016/j.eururo.2008.01.061.

13. Li C, Xu YM, Song LJ, et al. Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. J Urol. 2008;180(4):1538−1542. doi: 10.1016/j.juro.2008.06.013.

14. Mikami H, Kuwahara G, Nakamura N, et al. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells. J Urol. 2012;187(5):1882−1889. doi: 10.1016/j.juro.2011.12.059.

15. Xie M, Xu Y, Song L, et al. Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model. Surg Res. 2014;188(1):1−7. doi: 10.1016/j.jss.2013.11.1102.

16. Li H, Xu Y, Xie H, et al. Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model. Tissue Eng Part A. 2014;20(3–4):774–784. doi: 10.1089/ten.tea.2013.0122.

17. Wu S, Liu Y, Bharadwaj S, et al. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials. 2011;32(5):1317–1326. doi: 10.1016/j.biomaterials.2010.10.006.

18. Bodin A, Bharadwaj S, Wu S, et al. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials. 2010;31(34):8889−8901. doi: 10.1016/j.biomaterials.2010.07.108.

19. Beaghler M, Grasso M 3rd. Flexible cystoscopic bladder biopsies: a technique for outpatient evaluation of the lower urinary tract urothelium. Urology. 1994;44(5):756–759. doi: 10.1016/s0090-4295(94)80223-8.

20. Lamb CR, Trower ND, Gregory SP. Ultrasound-guided catheter biopsy of the lower urinary tract: technique and results in 12 dogs. J Small Anim Pract. 1996;37(9):413–416. doi: 10.1111/j.1748-5827.1996.tb02438.x.

21. Cilento BG, Freeman MR, Schneck FX, et al. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol. 1994;152(2 Pt 2):665–670. doi: 10.1016/s0090-4295(98)00161-7.

22. Duffey B, Monga M. Principles of endoscopy. In: Wein AJ, Kavoussi LR, Campbell MF, editors. Campbell-Walsh urology. 10th ed. Philadelphia, PA: Elsevier Saunders; 2012. p. 192–203. doi: 10.1016/b978-1-4160-6911-9.00008-6.

23. Zhang YY, Ludwikowski B, Hurst R, Frey P. Expansion and long-term culture of differentiated normal rat urothelial cells in vitro. In Vitro Cell Dev Biol Anim. 2001;37(7):419–429. doi: 10.1290/1071-2690(2001)037<0419:ealtco>2.0.co;2.

24. Bhargava S, Chapple CR. Buccal mucosal urethroplasty: is it the new gold standard? BJU Int. 2004;93(9):1191–1193. doi: 10.1111/j.1464-410x.2003.04860.x.

25. Peterson AC, Webster GD. Management of urethral stricture disease: developing options for surgical intervention. BJU Int. 2004;94(7):971–976. doi: 10.1111/j.1464-410x.2004.05088.x

26. Filipas D, Fisch M, Fichtner J, et al. The histology and immunohistochemistry of free buccal mucosa and full-skin grafts after exposure to urine. BJU Int. 1999;84(1):108–111. doi: 10.1046/j.1464-410x.1999.00079.x.

27. Souza GF, Calado AA, Delcelo R, et al. Histopathological evaluation of urethroplasty with dorsal buccal mucosa: an experimental study in rabbits. Int Braz J Urol. 2008;34(3):345–354. doi: 10.1590/s1677-55382008000300012.

28. Osman NI, Hillary C, Bullock AJ, et al. Tissue engineered buccal mucosa for urethroplasty: progress and future directions. Adv Drug Deliv Rev. 2015;82–83:69–76. doi: 10.1016/j.addr.2014.10.006.

29. Bhargava S, Chapple CR, Bullock AJ, et al. Tissue-engineered buccal mucosa for substitution urethroplasty. BJU Int. 2004;93(6):807–811. doi: 10.1111/j.1464-410x.2003.04723.x.

30. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi: 10.1089/107632701300062859.

31. van Dijk A, Niessen HW, Zandieh Doulabi B, et al. Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res. 2008;334(3):457–467. doi: 10.1007/s00441-008-0713-6.

32. Brzoska M, Geiger H, Gauer S, Baer P. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem Biophys Res Commun. 2005;330(1):142–150. doi: 10.1016/j.bbrc.2005.02.141.

33. Shi JG, Fu WJ, Wang XX, et al. Transdifferentiation of human adipose-derived stem cells into urothelial cells: potential for urinary tract tissue engineering. Cell Tissue Res. 2012;347(3):737–746. doi: 10.1007/s00441-011-1317-0.

34. Yang B, Zheng JH, Zhang YY. Myogenic differentiation of mesenchymal stem cells for muscle regeneration in urinary tract. Chin Med J (Engl). 2013;126(15):2952–2959.

35. Kanematsu A, Yamamoto S, Iwai-Kanai E, et al. Induction of smooth muscle cell-like phenotype in marrow-derived cells among regenerating urinary bladder smooth muscle cells. Am J Pathol. 2005;166(2):565–573. doi: 10.1016/s0002-9440(10)62278-x.

36. Jack GS, Zhang R, Lee M, et al. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials. 2009;30(19):3259–3270. doi: 10.1016/j.biomaterials.2009.02.035.

37. Васютин И.А., Люндуп А.В., Кузнецов С.Л. Моча как источник стволовых клеток для регенеративной медицины мочевыводящих путей. / II Национальный конгресс по регенеративной медицине; Декабрь 3−5, 2015; Москва. — С. 41. [Vasyutin IA, Lyundup AV, Kuznetsov SL. Mocha, kak istochnik stvolovykh kletok dlya regenerativnoi meditsiny mochevyvodyashchikh putei. (Conference proceedigs) II Natsional’nyi kongress po regenerativnoi meditsine; 2015 dec 3−5; Moscow. p. 41. (In Russ).] Доступно по: http://www.mediexpo.ru/fileadmin/user_upload/content/pdf/thesis/thesis_nkrm2015.pdf. Ссылка активна на 21.01.2017.

38. Zhang Y, McNeill E, Tian H, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–2233. doi: 10.1016/j.juro.2008.07.023.

39. Bharadwaj S, Liu G, Shi Y, et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells. 2013;31(9):1840–1856. doi: 10.1002/stem.1424.

40. Bharadwaj S, Liu G, Shi Y, et al. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng Part A. 2011;17(15–16):2123–2132. doi: 10.1089/ten.tea.2010.0637.

41. Osborn SL, Thangappan R, Luria A, et al. Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med. 2014;3(5):610–619. doi: 10.5966/sctm.2013-0131.

42. Yang L, Geng Z, Nickel T, et al. Differentiation of human induced-pluripotent stem cells into smooth-muscle cells: two novel protocols. PLoS One. 2016;11(1):e0147155. doi: 10.1371/journal.pone.0147155.

43. De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. Urology. 2002;168(4 Pt 2):1789–1793. doi: 10.1016/s0022-5347(05)64414-x.

44. Feng C, Xu YM, Fu Q, et al. Reconstruction of three-dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng Part A. 2011;17(23–24):3011–3019. doi: 10.1089/ten.tea.2011.0061.

45. Wu S, Liu Y, Bharadwaj S, et al. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials. 2011;32(5):1317–1326. doi: 10.1016/j.biomaterials.2010.10.006.

46. Davis NF, Mooney R, Piterina AV, et al. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology. 2011;78(4):954–960. doi: 10.1016/j.urology.2011.06.036.

47. Keane T, Saldin L, Badylak S. Decellularization of mammalian tissues: preparing extracellular matrix bioscaffolds. In: Tomlins P, editor. Characterisation and design of tissue scaffolds. Woodhead Publishing; 2015. р. 75–103. doi: 10.1016/B978-1-78242-087-3.00004-3.

48. Feng C, Xu YM, Fu Q, et al. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J Biomed Mater Res A. 2010;94(1):317–325. doi: 10.1002/jbm.a.32729.

49. Ralston DR, Layton C, Dalley AJ, et al. The requirement for basement membrane antigens in the production of human epidermal/dermal composites in vitro. Br J Dermatol. 1999;140(4):605–615. doi: 10.1046/j.1365-2133.1999.02758.x.

50. Martino MM, Briquez PS, Ranga A, et al. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci U S A. 2013;110(12):4563–4568. doi: 10.1073/pnas.1221602110.

51. Catelas I, Dwyer JF, Helgerson S. Controlled release of bioactive transforming growth factor beta-1 from fibrin gels in vitro. Tissue Eng Part C Methods. 2008;14(2):119–128. doi: 10.1089/ten.tec.2007.0262.

52. de Kemp V, de Graaf P, Fledderus JO, et al. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLoS One. 2015;10(2):e0118653. doi: 10.1371/journal.pone.0118653.

53. Kundu AK, Gelman J, Tyson DR. Composite thin film and electrospun biomaterials for urologic tissue reconstruction. Biotechnol Bioeng. 2011;108(1):207–215. doi: 10.1002/bit.22912.

54. Tomlins P, editor. Characterisation and design of tissue scaffolds. Woodhead Publishing; 2015. 294 р. doi: 10.1016/c2013-0-16452-5.

55. Chen G, Kawazoe N. Preparation of polymer-based porous scaffolds for tissue engineering. In: Tomlins P, editor. Characterisation and design of tissue scaffolds. Woodhead Publishing; 2015. р. 105–125. doi: 10.1016/B978-1-78242-087-3.00005-5.

56. Nakanishi Y, Chen G, Komuro H, et al. Tissue-engineered urinary bladder wall using PLGA mesh-collagen hybrid scaffolds: a comparison study of collagen sponge and gel as a scaffold. J Pediatr Surg. 2003;38(12):1781–1784. doi: 10.1016/j.jpedsurg.2003.08.034.

57. Salem SA, Hwei NM, Bin Saim A, et al. Polylactic-co-glycolic acid mesh coated with fibrin or collagen and biological adhesive substance as a prefabricated, degradable, biocompatible, and functional scaffold for regeneration of the urinary bladder wall. J Biomed Mater Res A. 2013;101(8):2237–2247. doi: 10.1002/jbm.a.34518.

58. Auger FA, Remy-Zolghadri M, Grenier G, Germain L. A truly new approach for tissue engineering: the LOEX self-assembly technique. Ernst Schering Res Found Workshop. 2002;(35):73–88. doi: 10.1007/978-3-662-04816-0_6.

59. Magnan M, Levesque P, Gauvin R, et al. Tissue engineering of a genitourinary tubular tissue graft resistant to suturing and high internal pressures. Tissue Eng Part A. 2009;15(1):197–202. doi: 10.1089/ten.tea.2007.0303.

60. Глыбочко П.В., Аляев Ю.Г., Николенко В.Н., и др. Заместительная уретропластика с использованием тканеинженерной конструкции на основе децеллюляризированной сосудистой матрицы и аутологичных клеток слизистой оболочки щеки: первый опыт // Урология. — 2015. — №3 — С. 4–10. [Glybochko PV, Aljaev JuG, Nikolenko VN, et al. Tissue-engineered substitution urethroplasty based on decellularized vascular matrix and autologous cells of the buccal mucosa: the first experience. Urologiia. 2015;(3):4–10. (In Russ).]


Для цитирования:


Васютин И.А., Люндуп А.В., Винаров А.З., Бутнару Д.В., Кузнецов С.Л. Реконструкция уретры с помощью технологий тканевой инженерии. Вестник Российской академии медицинских наук. 2017;72(1):17-25. https://doi.org/10.15690/vramn771

For citation:


Vasyutin I.A., Lyundup A.V., Vinarov A.Z., Butnaru D.V., Kuznetsov S.L. Urethra Reconstruction with Tissue-Engineering Technology Annals of the Russian academy of medical sciences. 2017;72(1):17-25. (In Russ.) https://doi.org/10.15690/vramn771

Просмотров: 755


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-6047 (Print)
ISSN 2414-3545 (Online)