ACELLULAR TRACHEAL CARTILAGINOUS SCAFFOLD PRODUCING FOR TISSUE-ENGINEERED CONSTRUCTS

Cover Page
  • Authors: Baranovsky D.S.1, Demchenko A.G.1, Oganesyan R.V.1, Lebedev G.V.2, Berseneva D.A.1, Balyasin M.V.1, Parshin V.D.1, Lyundup A.V.1
  • Affiliations:
    1. Sechenov First Moscow State Medical University Ministry of Health of Russian Federation
    2. Lomonosov Moscow State University
  • Issue: Vol 72, No 4 (2017)
  • Pages: 254-260
  • Section: CELL TRANSPLANTOLOGY AND TISSUE ENGINEERING: CURRENT ISSUES
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/723
  • DOI: https://doi.org/10.15690/vramn723
  • Cite item

Abstract


Background: Tissue-engineered trachea transplantation remains the last chance for a variety of patients suffering from severe cicatricial tracheal stenosis. Despite the series of carried studies, the final solution hasn’t been found. Creating a functionally complete hyaline cartilage graft in vitro still presents a fundamental problem, and a number of researchers consider it as the key to a successful tracheal tissue-engineering.

Aims: The study aimed to investigate the capability of detergent complex and DNAse I for human tracheal cartilage decellularization in short-time exposition for acellular scaffold obtaining.

Materials and methods: Isolated from cadaveric trachea human native cartilage was used for decellularization by ensimatic-detergent complex including Triton X-100, DMSO, and DNAse I. The scaffold was characterised by histological examinations, analysis of the residual DNA content, and cell metabolic activity colorimetric test with culture in the scaffold fragments.

Results: The obtained scaffolds presented highly porous structure mostly composed of collagen and glycosaminoglycans with an insignificant residual DNA level, absence of citotoxicity, and capability for cell proliferative activity stimulation.

Conclusions: Thus, the study provides a new short-time technology for hyaline cartilage decellularization in order to achieve acellular scaffolds in step with the tissue engineering requirements.


D. S. Baranovsky

Sechenov First Moscow State Medical University Ministry of Health of Russian Federation

Author for correspondence.
Email: doc.baranovsky@gmail.com
ORCID iD: 0000-0002-6154-9959

Russian Federation

Научный сотрудник Института регенеративной медицины.

119991, Москва, ул. Трубецкая, д. 8, стр. 2.

SPIN-код: 6913-6361

A. G. Demchenko

Sechenov First Moscow State Medical University Ministry of Health of Russian Federation

Email: demchenkoann@yandex.ru
ORCID iD: 0000-0002-4460-7627

Russian Federation

Студент-лаборант 3-го курса Института регенеративной медицины.

119991, Москва, ул. Трубецкая, д. 8, стр. 2.

SPIN-код: 3779-9060

R. V. Oganesyan

Sechenov First Moscow State Medical University Ministry of Health of Russian Federation

Email: oganesyan.rv@gmail.com
ORCID iD: 0000-0001-8967-5597

Russian Federation

Студент 5-го курса Института регенеративной медицины.

119991, Москва, ул. Трубецкая, д. 8, стр. 2.

SPIN-код: 8106-3394

G. V. Lebedev

Lomonosov Moscow State University

Email: lebedev.george12@gmail.com
ORCID iD: 0000-0001-8493-3390

Russian Federation

Студент 2-го курса.

119991, Москва, Ломоносовский проспект, д. 1.

SPIN-код: 2050-4004

D. A. Berseneva

Sechenov First Moscow State Medical University Ministry of Health of Russian Federation

Email: berseneva1410@rambler.ru
ORCID iD: 0000-0001-5970-2240

Russian Federation Moscow

M. V. Balyasin

Sechenov First Moscow State Medical University Ministry of Health of Russian Federation

Email: max160203@gmail.com
ORCID iD: 0000-0002-3097-344X

Russian Federation Moscow

V. D. Parshin

Sechenov First Moscow State Medical University Ministry of Health of Russian Federation

Email: vdparshin@yandex.ru

Russian Federation Moscow

A. V. Lyundup

Sechenov First Moscow State Medical University Ministry of Health of Russian Federation

Email: lyundup@gmail.com
ORCID iD: 0000-0002-0102-5491

Russian Federation

Кандидат медицинских наук, заведующий отделением клеточных технологий Института регенеративной медицины.

119991, Москва, ул. Трубецкая, д. 8, стр. 2, тел.: +7 (495) 609-14-00.

SPIN-код: 4954-3004

  1. Vacanti CA, Paige KT, Kim WS, et al. Experimental tracheal replacement using tissue-engineered cartilage. J Pediatr Surg. 1994;29(2):201–205. doi: 10.1016/0022-3468(94)90318-2.
  2. Stein AA, Quebral R, Boba A, Landmesser C. A post mortem evaluation of laryngotracheal alterations associated with intubation. Ann Surg. 1960;151(1):130–138.
  3. Delaere PR, Van Raemdonck D. The trachea: the first tissue-engineered organ? J Thorac Cardiovasc Surg. 2014;147(4):1128–1132. doi: 10.1016/j.jtcvs.2013.12.024.
  4. Kojima K, Vacanti CA. Tissue engineering in the trachea. Anat Rec (Hoboken). 2014;297(1):44–50. doi: 10.1002/ar.22799.
  5. Cull DL, Lally KP, Mair EA, et al. Tracheal reconstruction with polytetrafluoroethylene graft in dogs. Ann Thorac Surg. 1990;50(6):899–901. doi: 10.1016/0003-4975(90)91116-s.
  6. Bottema JR, Wildevuur CH. Incorporation of microporous Teflon tracheal prostheses in rabbits: evaluation of surgical aspects. J Surg Res. 1986;41(1):16–23. doi: 10.1016/0022-4804(86)90003-x.
  7. Ziegelaar BW, Aigner J, Staudenmaier R, et al. The characterisation of human respiratory epithelial cells cultured on resorbable scaffolds: first steps towards a tissue engineered tracheal replacement. Biomaterials. 2002;23(6):1425–1438. doi: 10.1016/s0142-9612(01)00264-2.
  8. Lim ML, Jungebluth P, Sjoqvist S, et al. Decellularized feeders: an optimized method for culturing pluripotent cells. Stem Cells Transl Med. 2013;2(12):975–982. doi: 10.5966/sctm.2013-0077.
  9. Carbognani P, Spaggiari L, Solli P, et al. Experimental tracheal transplantation using a cryopreserved aortic allograft. Eur Surg Res. 1999;31(2):210–215. doi: 10.1159/000008641.
  10. Vorotnikova E, McIntosh D, Dewilde A, et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 2010;29(8):690-700. doi: 10.1016/j.matbio.2010.08.007.
  11. Barkan D, Green JE, Chambers AF. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer. 2010;46(7):1181–1188. doi: 10.1016/j.ejca.2010.02.027.
  12. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309. doi: 10.1146/annurev.cellbio.22.010305.104315.
  13. Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 2006;20(1):9–22. doi: 10.1096/fj.05-4682rev.
  14. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–573. doi: 10.1016/j.cardiores.2005.12.002.
  15. Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601. doi: 10.1111/j.1524-475X.2008.00410.x.
  16. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol. 2002;14(5):608–616. doi: 10.1016/s0955-0674(02)00361-7.
  17. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53. doi: 10.1146/annurev-bioeng-071910-124743.
  18. Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–2030. doi: 10.1016/S0140-6736(08)61598-6.
  19. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28(25):3587–3593. doi: 10.1016/j.biomaterials.2007.04.043.
  20. Nishiguchi MK, Doukakis P, Egan M, et al. DNA isolation procedures. In: DeSalle R, Giribet G, Wheeler W, editors. Techniques in molecular systematics and evolution. Birkhäuser Basel; 2002. pp 249–287. doi: 10.1007/978-3-0348-8125-8_12.
  21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4.
  22. Baiguera S, Jungebluth P, Burns A, et al. Tissue engineered human tracheas for in vivo implantation. Biomaterials. 2010;31(34):8931–8938. doi: 10.1016/j.biomaterials.2010.08.005.
  23. Baiguera S, Del Gaudio C, Kuevda E, et al. Dynamic decellularization and cross-linking of rat tracheal matrix. Biomaterials. 2014;35(24):6344–6350. doi: 10.1016/j.biomaterials.2014.04.070.
  24. Batioglu-Karaaltin A, Karaaltin MV, Ovali E, et al. In vivo tissue-engineered allogenic trachea transplantation in rabbits: a preliminary report. Stem Cell Rev. 2015;11(2):347–356. doi: 10.1007/s12015-014-9570-8.
  25. Sui X, Zhao B, Lu S, et al, inventors. Cartilage cell epimatrix three-dimensional porous sponge stent for tissue engineering. Patent CN 200810057373. 2008 Jan 31.
  26. Jiahuan D, Xianchang S, Song G, et al, inventors. Biological type cartilage repair material and preparation method. Patent CN 201310192619. 2013 May 22.
  27. Gordeliy VI, Kiselev MA, Lesieur P, et al. Lipid membrane structure and interactions in dimethyl sulfoxide/water mixtures. Biophys J. 1998;75(5):2343–2351. doi: 10.1016/S0006-3495(98)77678-7.
  28. Jackson M, Mantsch HH. Beware of proteins in DMSO. Biochim Biophys Acta. 1991;1078(2):231–235. doi: 10.1016/0167-4838(91)90563-f.

Views

Abstract - 30

PDF (Russian) - 15

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies