Preview

Вестник Российской академии медицинских наук

Расширенный поиск

Симуляционные модели в спинальной хирургии

https://doi.org/10.15690/vramn681

Полный текст:

Аннотация

Представленный обзор литературы отражает современное состояние симуляционных технологий в нейрохирургии и в частности в спинальной хирургии. В настоящее время существуют различные виды технических приложений, используемых в хирургии позвоночника, среди которых выделяют биологические, искусственные и виртуальные модели. Это способствует оптимальному изучению анатомии, пониманию пространственных взаимоотношений органов и тканей, правильному планированию этапов оперативного вмешательства, получению тактильных навыков. Внедрение симуляционных технологий в процесс обучения позволяет объективно оценивать исходный уровень профессиональной подготовки, повышать уровень компетенции специалистов, а также предупреждать ошибочные действия врачей в различных клинических ситуациях.

Об авторах

Вадим Анатольевич Бывальцев
Иркутский государственный медицинский университет, Иркутск, Российская Федерация Дорожная клиническая больница на ст. Иркутск-Пассажирский, Иркутск, Российская Федерация Иркутский научный центр хирургии и травматологии, Иркутск Российская Федерация
Россия

доктор медицинских наук, заведующий курсом нейрохирургии Иркутского государственного медицинского университета, главный нейрохирург Департамента здравоохранения ОАО «РЖД», руководитель центра нейрохирургии негосударственного учреждения здравоохранения Дорожной клинической больницы на станции Иркутск-Пассажирский ОАО «РЖД», руководитель научно- клинического отдела нейрохирургии Иркутского научного центра хирургии и травматологии, профессор кафедры травматологии, ортопедии и нейрохирургии Иркутской государственной медицинской академии последипломного образования Адрес: 664082, Иркутск, ул. Боткина, д. 10, тел.: +7 (3952) 63-85-28



Андрей Андреевич Калинин
Иркутский государственный медицинский университет, Иркутск, Российская Федерация Дорожная клиническая больница на ст. Иркутск-Пассажирский, Иркутск, Российская Федерация
Россия

кандидат медицинских наук, доцент курса нейрохирургии Иркутского медицинского университета, врач-нейрохирург центра нейрохирургии негосударственного учреждения здравоохранения Дорожной клинической больницы на станции Иркутск-Пассажирский ОАО «РЖД» Адрес: 664082, Иркутск, ул. Боткина, д. 10, тел.: +7 (3952) 63-85-28



Евгений Георгиевич Белых
Иркутский государственный медицинский университет, Иркутск, Российская Федерации Иркутский научный центр хирургии и травматологии, Иркутск Российская Федерация
Россия

ассистент курса нейрохирургии Иркутского медицинского университета, аспирант Иркутского научного центра хирургии и травматологии Адрес: 664082, Иркутск, ул. Боткина, д. 10, тел.: +7 (3952) 63-85-28



Иван Андреевич Степанов
Иркутский государственный медицинский университет, Иркутск, Российская Федерация
Россия

аспирант курса нейрохирургии Иркутского государственного медицинского университета Адрес: 664003, Иркутск, ул. Красного Восстания, д. 14, тел.: +7 (951) 632-66-35



Список литературы

1. Бывальцев В.А., Белых Е.Г., Коновалов Н.А. Новые симуляционные технологии в медицине // Вопросы нейрохирургии им. Н.Н. Бурденко. — 2016. — Т. 80. — №2. — С. 102–107. [Byvaltsev VA, Belykh EG, Konovalov NA. New simulation technologies in neurosurgery. Zh Vopr Neirokhir Im N N Burdenko. 2016;80(2):102–107. (In Russ.)]

2. Бывальцев В.А., Белых Е.Г. Симуляционный тренинг в нейрохирургии. — Новосибирск: Наука; 2016. — 252 с. [Byval’tsev VA, Belykh EG. Simulyatsionnyi trening v neirokhirurgii. Novosibirsk: Nauka; 2016. 252 p. (In Russ.)]

3. Бывальцев В.А., Калинин А.А., Панасенков С.Ю., Асанцев А.О. Патент РФ на изобретение №2584136 Способ моделирования дегенеративных изменений позвоночника. Опубл. Бюллетень №14 от 20.05.16. [Patent RUS №2584136/20.05.02. Byul. №14. Byvaltsev VA, Kalinin AA, Panasenkov SU, Asancev AO. Sposob modelirovanija degenerativnyh izmenenij pozvonochnika. (In Russ).] Доступно по: Доступно по http:// www.findpatent.ru/patent/258/2584136.html. Ссылка активна на 01.06.2016.

4. Choudhury N, Gelinas-Phaneuf N, Delorme S, Del Maestro R. Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills. World Neurosurg. 2013;80(5):e9– 19. doi: 10.1016/j.wneu.2012.08.022.

5. Chitale R, Ghobrial GM, Lobel D, Harrop J. Simulated lumbar minimally invasive surgery educational model with didactic and technical components. Neurosurgery. 2013;73 Suppl 1:107– 110. doi: 10.1227/NEU.0000000000000091.

6. Chan S, Conti F, Salisbury K, Blevins NH. Virtual reality simulation in neurosurgery: technologies and evolution. Neurosurgery. 2013;72 (Suppl 1):154–164. doi: 10.1227/NEU.0b013e3182750d26.

7. Burchiel KJ. Commentary: Simulation training in neurological surgery. Neurosurgery. 2013;73 (Suppl 1):6–7. doi: 10.1227/NEU.0000000000000114.

8. Apuzzo ML. New dimensions of neurosurgery in the realm of high technology: possibilities, practicalities, realities. Neurosurgery. 1996;38(4):625–639. doi: 10.1097/00006123-199604000- 00001.

9. Симуляционное обучение в медицине / Под ред. А.А. Свистунова. — М.: Изд-во Первого МГМУ им. И.М. Сеченова; 2013.— 288 с. [Simulyatsionnoe obuchenie v meditsine. Ed by A.A. Svistunov. Moscow: Izd-vo Pervogo MGMU im. I.M. Sechenova; 2013. 288 p. (In Russ).]

10. Bambakidis NC, Selman WR, Sloan AE. Surgical rehearsal platform: potential uses in microsurgery. Neurosurgery. 2013;73 (Suppl 1):122–126. doi: 10.1227/NEU.0000000000000099.

11. Bova FJ, Rajon DA, Friedman WA, et al. Mixed-reality simulation for neurosurgical procedures. Neurosurgery. 2013;73 (Suppl 1):138–145. doi: 10.1227/NEU.0000000000000113.

12. Issenberg SB, McGaghie WC, Petrusa ER, et al. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10–28. doi: 10.1080/01421590500046924.

13. Harrop JS, Sharan AD, Traynelis VC. Spine simulation. Congr Q. 2011;12:12–13.

14. Clarke DB, D’Arcy RC, Delorme S, et al. Virtual reality simulator: Demonstrated use in neurosurgical oncology. Surg Innov. 2013;20(2):190–197. doi: 10.1177/1553350612451354.

15. Apuzzo ML, Elder JB, Liu CY. The metamorphosis of neurological surgery and the reinvention of the neurosurgeon. Neurosurgery. 2009;64(5):788–794. doi: 10.1227/01. NEU.0000346651.35266.65.

16. Alaraj A, Lemole MG, Finkle JH, et al. Virtual reality training in neurosurgery: Review of current status and future applications. Surg Neurol Int. 2011;2:52. doi: 10.4103/2152-7806.80117.

17. Wang VY, Chin CT, Lu DC, et al. Free-hand thoracic pedicle screws placed by neurosurgery residents: a CT analysis. Eur Spine J. 2010;19(5):821–827. doi: 10.1007/s00586-010-1293-1.

18. Kalayci M, Cagavi F, Gul S, et al. A training model for lumbar discectomy. J Clin Neurosci. 2005;12(6):673–675. doi: 10.1016/j.jocn.2004.12.004.

19. Walker JB, Perkins E, Harkey HL. A novel simulation model for minimally invasive spine surgery. Neurosurgery. 2009;65(6 Suppl 1):188–195. doi: 10.1227/01.NEU.0000341534.82210.1B.

20. Alaraj A, Charbel FT, Birk D, et al. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery. 2013;72 (Suppl 1):115–123. doi: 10.1227/NEU.0b013e3182753093 .

21. Suslu HT, Tatarli N, Karaaslan A, Demirel N. A practical laboratory study simulating the lumbar microdiscectomy: training model in fresh cadaveric sheep spine. J Neurol Surg A Cent Eur Neurosurg. 2014;75(3):167–169. doi: 10.1055/s-0032-1330114.

22. Kirkman MA, Ahmed M, Albert AF, et al. The use of simulation in neurosurgical education and training. A systematic review. J Neurosurg. 2014;121(2):228–246. doi: 10.3171/2014.5.JNS131766.

23. Tiede U, Bomans M, Hohne KH, et al. A computerized threedimensional atlas of the human skull and brain. AJNR Am J Neuroradiol. 1993;14(3):551–559.

24. Malone HR, Syed ON, Downes MS, et al. Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery. 2010;67(4):1105–1116. doi: 10.1227/NEU.0b013e3181ee46d0.

25. Luciano CJ, Banerjee PP, Sorenson JM, et al. Percutaneous spinal fixation simulation with virtual reality and haptics. Neurosurgery. 2013;72 (Suppl 1):89–96. doi: 10.1227/NEU.0b013e3182750a8d.

26. Reznick RK, MacRae H. Teaching surgical skills changes in the wind. N Engl J Med. 2006;355(25):2664–2669. doi: 10.1056/NEJMra054785

27. Quest DO. Naval aviation and neurosurgery: traditions, commonalities, and lessons learned. The 2007 presidential address. J Neurosurg. 2007;107(6):1067–1073. doi: 10.3171/JNS-07/12/1067.

28. Price J, Naik V, Boodhwani M, et al. A randomized evaluation of simulation training on performance of vascular anastomosis on a high-fidelity in vivo model: the role of deliberate practice. Thorac Cardiovasc Surg. 2011;142(3):496–503. doi: 10.1016/j.jtcvs.2011.05.015.

29. Mattei TA, Frank C, Bailey J, et al. Design of a synthetic simulator for pediatric lumbar spine pathologies. J Neurosurg Pediatr. 2013;12(2):192–201. doi: 10.3171/2013.4.PEDS12540.

30. Marcus H, Vakharia V, Kirkman MA, et al. Practice makes perfect? The role of simulation-based deliberate practice and script-based mental rehearsal in the acquisition and maintenance of operative neurosurgical skills. Neurosurgery. 2013;72 (Suppl 1):124–130. doi: 10.1227/NEU.0b013e318270d010.

31. Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–341. doi: 10.1007/s11548- 010-0476-x.

32. Ray WZ, Ganju A, Harrop JS, Hoh DJ. Developing an anterior cervical diskectomy and fusion simulator for neurosurgical resident training. Neurosurgery. 2013;73 (Suppl 1):100–106. doi: 10.1227/NEU.0000000000000088.

33. Rambani R, Ward J, Viant W. Desktop-based computer-assisted orthopedic training system for spinal surgery. J Surg Educ. 2014;71(6):805–809. doi: 10.1016/j.jsurg.2014.04.012.

34. Turan Suslu H, Tatarli N, Hicdonmez T, Borekci A. A laboratory training model using fresh sheep spines for pedicular screw fixation. Br J Neurosurg. 2011;26(2):252–254. doi: 10.3109/02688697.2011.619598.

35. Luciano CJ, Banerjee PP, Bellotte B, et al. Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery. 2011;69(1 Suppl Operative):ons14–19; discussion ons19. doi: 10.1227/ NEU.0b013e31821954ed.

36. Vloeberghs M, Glover A, Benford S, et al. Virtual neurosurgery, training for the future. Br J Neurosurg. 2007;21(3):262–267. doi: 10.1080/02688690701245824.

37. Ra JB, Kwon SM, Kim JK, et al. Spine needle biopsy simulator using visual and force feedback. Comput Aided Surg. 2002;7(6):353– 363. doi: 10.1002/igs.10057.

38. Manbachi A, Cobbold RS, Ginsberg HJ. Guided pedicle screw insertion: techniques and training. Spine J. 2014;14(1):165–179. doi: 10.1016/j.spinee.2013.03.029.


Для цитирования:


Бывальцев В.А., Калинин А.А., Белых Е.Г., Степанов И.А. Симуляционные модели в спинальной хирургии. Вестник Российской академии медицинских наук. 2016;71(4):297-303. https://doi.org/10.15690/vramn681

For citation:


Byvaltsev V.A., Kalinin A.A., Belykh E.G., Stepanov I.A. Simulation technologies in spinal surgery. Annals of the Russian academy of medical sciences. 2016;71(4):297-303. (In Russ.) https://doi.org/10.15690/vramn681

Просмотров: 346


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-6047 (Print)
ISSN 2414-3545 (Online)