Gender Features of Radical Oxidation of Lipids in Menopausal Women and Men in Andropause

Cover Page


Cite item

Full Text

Abstract

Aims: Our aim was to assess lipid peroxidation ― antioxidant protection in menopausal women and men in andropause and to compare these processes in different gender and age groups. 

Materials and methods:74 women and 37 men were examined. This study was a prospective, randomized cohort study. Women were divided into perimenopausal group (n=22, mean age 49.03±3.13), postmenopausal group (n=15, mean age 54.43±4.54) and control (n=37, mean age 34±1.2). Men were divided into a group of andropause (n=20, mean age 50.38±2.63) and control (n=17, mean age 35.21±4.75). Body mass index in the main and control groups was comparable. Questionnaires, clinical examination, assessment of the lipid peroxidation-antioxidant defense system, and the calculation of oxidative stress ratio were conducted to all participants of the study. 

Results: In women from the reproductive phase transition to its extinction increases content of compounds with conjugated double bonds by 22% (p<0.05) in perimenopause and by 27% (p<0.05) in postmenopause, increases content of the ketodienes and coupled trienes by 21% (p<0.05) in perimenopause relative to the control group and reduced by 27% (p<0.05) in postmenopausal women relative to the group of perimenopause. The antioxidant system in women observed the following changes: decrease in the α-tocopherol levels in postmenopausal women by 37% relative to control and by 22% (p<0.05) to compare perimenopause; reduction of retinol level by 29% (p<0.05) in the perimenopause and by 39% (p<0.05) in postmenopause relative to control, increasing of the content of GSSG by 18% (p<0.05) in postmenopause to compare control. When comparing groups of men statistically significant differences were not found. When comparing the groups according to gender, we revealed in men the increased content of compounds with conjugated double bonds by 38% (p<0.05), the GSSG by 13% (p<0.05), reduced content of the ketodienes and coupled trienes by 43% (p<0,05), α-tocopherol by 24% (p<0.05), SOD activity by 9% (p<0.05).Coefficient oxidative stress in perimenopausal women was 2,5, in postmenopausal ― 3,48, in andropause ― 0,97.

Conclusions: Expressed lipid peroxidation activity is more physiological in andropause than in menopause. Men in andropause have large functional reserves and adaptive capacity than menopausal women.

About the authors

L. I. Kolesnikova

Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk

Author for correspondence.
Email: iphr@sbamsr.irk.ru

Член-корреспондент РАН, научный руководитель 

Адрес: 664003, Иркутск, ул. Тимирязева, д. 16

Россия

I. M. Madaeva

Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk

Email: nightchild@mail.ru

Доктор медицинских наук, ведущий научный сотрудник лаборатории патофизиологии 

SPIN-код  9869-7793

Россия

N. V. Semenova

Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk

Email: iphr@sbamsr.irk.ru
Кандидат биологических наук, старший научный сотрудник лаборатории патофизиологии 

E. V. Osipova

Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk

Email: iphr@sbamsr.irk.ru
Доктор биологических наук, главный научный сотрудник лаборатории патофизиологии 

M. A. Darenskaya

Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk

Email: iphr@sbamsr.irk.ru
Доктор биологических наук, ведущий научный сотрудник лаборатории патофизиологии ФГБНУ «НЦ ПЗСРЧ»

References

  1. Дедов И.И., Калинченко С.Ю. Возрастной андрогенный дефицит у мужчин. — М.: Практическая медицина; 2006. — 240 с. [Dedov II, Kalinchenko SY. Vozrastnoi androgennyi defitsit u muzhchin. Moscow: Prakticheskaya meditsina; 2006. 240 p. (In Russ).]
  2. Harmann D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. doi: 10.1093/geronj/11.3.298.
  3. Колесникова Л.И., Мадаева И.М., Семёнова Н.В. и др. Оценка системы «перекисное окисление липидов — антиоксидантная защита» у женщин с нарушениями сна в перименопаузальном периоде // Вестник Российской академии медицинских наук. — 2014. — Т. 69. — №11–12. — С. 11–16. [Kolesnikova LI, Madaeva IM, Semenova NV, et al. Evaluation of lipidperoxidation – antioxidant protection in perimenopausal women with sleep disorders. Annals of the Russian academy of medical sciences. 2014;69(11–12):11–16. (In Russ).] doi: 10.15690/vramn.v69i11-12.1177.
  4. Kolesnikova LI, Madaeva IM, Semenova NV, et al. Antioxidant potential of the blood in men with obstructive sleep breathing disorders. Bull Exp Biol Med. 2013;154(6):731–733. doi: 10.1007/s10517-013-2041-4.
  5. Sanches-Rodriguez MA, Zacarias-Flores M, Arronte-Rosales A, et al. Menopause as risk factor for oxidative stress. Menopause. 2012;19(3):361–367. doi: 10.1097/gme.0b013e318229977d.
  6. Mendoza CCC, Zamarripa CAJ. Menopause induces oxidative stress. In: Oxidative stress and chronic degenerative diseases — a role for antioxidants. InTech; 2013. doi: 10.5772/52082.
  7. Волчегорский И.А., Налимов А.Г., Яровинский Б.Г. Сопоставление различных подходов к определению продуктов перекисного окисления липидов в гептан-изопропанольных экстрактах крови // Вопросы медицинской химии. — 1989. — Т. 35. — Вып. 1. — С. 127—131. [Volchegorskii IA, Nalimov AG, Yarovinskii BG, Lifshits RI. Sopostavlenie razlichnykh podkhodov k opredeleniyu produktov perekisnogo okisleniya lipidov v geptan-izopropanol’nykh ekstraktakh krovi. Vopr Med Khim. 1989;35(1):127–131. (In Russ).]
  8. Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов перекисного окисления липидов в сыворотке крови по тесту с тиобарбитуровой кислотой // Вопросы медицинской химии. — 1987. — Т. 35. — №1. — С. 118—122. [GavrilovVB, GavrilovaAR, Mazhul’ LM. Analiz metodov opredeleniya produktov perekisnogo okisleniya lipidov v syvorotke krovi po testu s tiobarbiturovoi kislotoi. Vopr Med Khim. 1987;35(1):118–122. (In Russ).]
  9. Клебанов Г.И., Бабенкова И.В., Теселкин Ю.О. Оценка АОА плазмы крови с применением желточных липопротеидов // Лабораторное дело. — 1988. — Т. 5. — C. 59—60. [Klebanov GI, Babenkova IV, Teselkin YuO, et al. Otsenka antiokislitel’noi aktivnosti plazmy krovi s primeneniem zheltochnykh lipoproteidov. Lab Delo.1988;(5):59–60. (In Russ).]
  10. Черняускене Р.Ч., Варшкявичене З.З., Грибаускас П.С. Одновременное определение концентраций витаминов Е и А в сыворотке крови // Лабораторное дело. — 1984. — №6. —
  11. С. 362—365. [Chernyauskene RC, Varshkyavichene ZZ, Gribauskas PS. Odnovremennoe opredelenie kontsentratsii vitaminov E i A v syvorotke krovi. Lab Delo. 1984;(6):362–365. (In Russ).]
  12. Hissin PJ, Hilf R. A fluorоmetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214–226. doi: 10.1016/0003-2697(76)90326-2.
  13. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–3175.
  14. Viña J, Borras C, Abdelaziz KM, et al. The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal. 2013;19(8):779–787. doi: 10.1089/ars.2012.5111.
  15. Merksamer PI, Liu Y, He W, et al. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY). 2013;5(3):144–50. doi: 10.18632/aging.100544.
  16. Ворслов Л.О., Калинченко С.Ю., Гадзиева И.В. «Квартет здоровья» против «смертельного квартета» часть первая: метаболическая невропатия, легко диагностировать, трудно лечить // Эффективная фармакотерапия. Урология и нефрология. — 2013. — №1. — С. 38—47. [Vorslov LO, Kalinchenko SYu, Gadzieva IV. «Kvartet zdorov’ya» protiv «smertel’nogo kvarteta» chast’ pervaya: metabolicheskaya nevropatiya, legko diagnostirovat’, trudno lechit’. Effektivnaya farmakoterapiya. Urologiya i Nefrologiya. 2013;(1):38–47. (In Russ).]
  17. Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:761264. doi: 10.1155/2014/761264.
  18. Wu YT, Wu SB, Wei YH. Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases. Curr Pharm Des. 2014;20(35):5510–5526. doi: 10.2174/1381612820666140306103401.
  19. Калинченко С.Ю., Ворслов Л.О., Тюзиков И.А., Тишова Ю.А. Окислительный стресс как причина системного старения. роль препаратов α-липоевой кислоты (эспа-липон) в лечении и профилактике возраст-ассоциированных заболеваний // Фарматека. — 2014. — №6 — С. 44–54). [Kalinchenko SYu, Vorslov LO, Tyuzikov IA, Tishova YuA. Okislitel’nyi stress kak prichina sistemnogo stareniyа. Rol’ preparatov α-lipoevoi kisloty (еspa-lipon) v lechenii i profilaktike vozrast-assotsiirovannykh zabolevanii. Farmateka. 2014;(6):43–54.(In Russ)].
  20. Palmieri B, Sblendorio V. Oxidative stress detection: what for? Part II. Eur Rev Med Pharmacol Sci. 2007;11(1):27–54.
  21. Звычайный М.А. Преждевременное старение женского организма при дефиците половых стероидов — патогенез, терапия и профилактика: автореф. дис. … докт. мед. наук. —Челябинск; 2004. 40 с. [Zvychainyi MA. Prezhdevremennoe starenie zhenskogo organizma pri defitsite polovykh steroidov – patogenez, terapiya i profilaktika. [dissertation] Chelyаbinsk; 2004. 40 p. (In Russ).]
  22. Гилева В.В. Механизмы формирования полиморбидности у женщин пожилого возраста: автореф. дис. … канд. мед. наук. — СПб.; 2009. — 25 с. [Gileva VV. Mekhanizmy formirovaniya polimorbidnosti u zhenshchin pozhilogo vozrasta. [dissertation] Saint Petersburg; 2009. 25 р. (In Russ).]
  23. Bednarek-Tupikowska G. Antioxidant properties of estrogens. Ginecol Pol. 2002;73(1):61–67. [In Polish].
  24. Arora KS, Gupta N, Singh RA, et al. Role of free radicals in menopausal distress. J Clin Diagn Res. 2009;3(6):1900–1902.
  25. Reyes MR, Sifuentes-Alvarez А, Lazalde B. Estrogens are potentially the only steroids with an antioxidant role in pregnancy: in vitro evidence. Acta Obstet Gynecol Scand. 2006;85(9):1090–1093. doi: 10.1080/00016340500453685.
  26. Giordano G, Tait L, Furlong CE, et al. Gender differences in brain susceptibility to oxidative stress are mediated by levels of paraoxonase-2 expression. Free Radic Biol Med. 2013;58:98–108. doi: 10.1016/j.freeradbiomed.2013.01.019.
  27. Gardner AW, Parker DE, Montgomery PS, et al. Gender and racial differences in endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. J Vasc Surg. 2015;61(5):1249–1257. doi: 10.1016/j.jvs.2014.02.045.
  28. Muller GC, Gottlieb MG, Luz Correa B, et al. The inverted CD4:CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell Immunol. 2015;296(2):149–154. doi: 10.1016/j.cellimm.2015.05.006.
  29. Miwa K, Fujita M. Gender difference in oxidative stress and its genesis by analysis of serum α-tocopherol concentrations in a Japanese population. Int J Cardiol. 2008;129(3):453–454. doi: 10.1016/j.ijcard.2007.05.064.
  30. Vica J, Borras C, Gambini J. Why females live longer than males. Importance of the upregulation of longevity–associated genes by oestogenic compounds. FEBS Lett. 2005;579(12):2541–2545. doi: 10.1016/j.febslet.2005.03.090.
  31. Carmeli E, Coleman R, Reznick AZ. The biochemistry of aging muscle. Exp Gerontol. 2002;37(4):477–489. doi: 10.1016/S0531-5565(01)00220-0.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies