Sex Differences of Spectral Characteristics of Baseline EEG in Primary School-Aged Children

Cover Page

Abstract


The formation of brain bioelectrical activity occurs differently in girls and boys. The results of primary investigations show gender differences of functional brain organization in adolescents and adults. However, there is an opinion on the lack of gender distinctions in children before puberty. Objective: to define features of brain bioelectrical activity in primary school-aged children depending on a gender. Methods: on the basis of parental consent 200 7−9 aged right-handed schoolchildren took part in research (2012−2014). All children were divided into groups depending on biological age and gender. The monopolar electroencephalogram was registered according to 16 standard leads. Changes of the maximal amplitude, full power, the dominant frequency and the index of the main rhythms power of the electroencephalogram were assessed. Results: Prevalence of slow wave delta and theta activity in boys of 7 and 10 years, and also activities of theta range in 9-aged girls were revealed. The increase of the dominant alpha range frequency in 7-aged girls in occipital (p≤0,016) and temporal (p≤0,045) brain regions, and rising of full power of this rhythm in 8 aged girls in the left hemisphere (p≤0,023) while in 9-year aged girls in the right hemisphere (p≤0,040) were proved. At the age of 10 years full power of alpha range has the largest values in boys (p≤0,038). Among high-frequency components the predominance of the index beta-ranges in girls of 7 and 10 years were revealed. The increase in amplitude fluctuations in beta1-range mainly in the sensorimotor brain areas was typical for 7 aged boys. Conclusion: The revealed gender distinctions of the electroencephalogram testify to a larger maturity of the central nervous system in girls comparing with boys. It is shown that the age of 9 years is the active period of the cerebral cortex frontal lobes formation in girls.

 


A. V. Gribanov

Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk

Author for correspondence.
Email: a.gribanov@narfu.ru

Russian Federation MD, PhD, Professor

Y. S. Dzhos

Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk

Email: u.jos@narfu.ru

Russian Federation MD, PhD

  1. Фарбер Д.А., Дубровинская Н.В. Функциональная организация развивающегося мозга (возрастные особенности и некоторые закономерности) // Физиология человека. – 1999. – Т.17. – №5. – С.17−27. [Farber DA, Dubrovinskaya NV. Funktsional’naya organizatsiya razvivayushchegosya mozga (vozrastnye osobennosti i nekotorye zakonomernosti). Fiziologiya cheloveka. 1999;17(5):17−27. (In Russ).]
  2. Цицерошин М.Н. Отражение системной деятельности мозга в пространственной структуре ЭЭГ у взрослых и детей. Автореф. дис. … докт. биол. наук. – СПб.; 1997. 37 с. [Tsitseroshin MN. Otrazhenie sistemnoi deyatel’nosti mozga v prostranstvennoi strukture EEG u vzroslykh i detei. [dissertation] St. Petersburg; 1997. 37 p. (In Russ).]
  3. Горбачевская Н.Л. Особенности формирования ЭЭГ у детей в норме и при разных типах общих (первазивных) расстройств развития. Дис. … докт. биол. наук. – М.; 2000. 43 с. [Gorbachevskaya NL. Osobennosti formirovaniya EEG u detei v norme i pri raznykh tipakh obshchikh (pervazivnykh) rasstroistv razvitiya. [dissertation] Moscow; 2000. 43 p. (In Russ).]
  4. Сергеева Е.Г. Возрастные особенности функционального развития мозга у школьников, проживающих в условиях Европейского Севера. Автореф. дис. ... канд. биол. наук. – СПб.; 2009. 21 с. [Sergeeva EG. Vozrastnye osobennosti funktsional’nogo razvitiya mozga u shkol’nikov, prozhivayushchikh v usloviyakh Evropeiskogo Severa. [dissertation] St. Petersburg; 2009. 21 p. (In Russ).]
  5. Сороко С.И., Бекшаев С.С., Рожков В.П. ЭЭГ корреляты генофенотипических особенностей возрастного развития мозга у детей аборигенного и пришлого населения Северо-Востока России // Российский физиологический журнал имени И.М. Сеченова. – 2012. – Т. 98. – №1. – С. 3–26. [Soroko SI, Bekshaev SS, Rozhkov VP. EEG correlates of geno-phenotypical features of the brain development in children of the native and newcomers’ population of the Russian North-East. Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova. 2012;98(1):3–26. (In Russ).]
  6. Clarke AR, Barry RJ, McCarthy R, et al. Age and sex effects in the EEG: development of the normal child. Clin Neurophysiol. 2001;112(5):806–814. doi: 10.1016/s1388-2457(01)00488-6.
  7. Терещенко Е.П., Пономарев В.А., Мюллер А., Кропотов Ю.Д. Нормативные значения спектральных характеристик ЭЭГ здоровых испытуемых от 7 до 89 лет // Физиология человека. – 2010. – Т. 36. – №1. – С. 5–17. [Tereshchenko EP, Ponomarev VA, Myuller A, Kropotov YD. Normative EEG spectral characteristics in healthy subjects aged 7 to 89 years. Fiziologiya cheloveka. 2010;36(1):5–17. (In Russ).]
  8. Fonseca LC, Tedrus G, Martins SM, et al. Quantitative electroencephalography in healthy school age children: analysis of band power. Arquivos de Neuro-Psiquiatria. 2003;61(3B):796–801. doi: 10.1590/s0004-282x2003000500018.
  9. Королева Н.В., Колесников С.И., Долгих В.В. Динамика электроэнцефалографических показателей у детей с различными типами ЭЭГ // Бюллетень Восточно-Сибирского научного центра СО РАМН. – 2007. – Т.2. – №54. – С. 49−51. [Koroleva NV, Kolesnikov SI, Dolgikh VV. Dynamics of electroencephalography indices in children with different EEG types. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra SO RAMN. 2007;2(54):49−51. (In Russ).]
  10. Chiang AKI, Rennie CJ, Robinson PA, et al. Age trends and sex differences of alpha rhythms including split alpha peaks. Clin Neurophysiol. 2011;122(8):1505–1517. doi: 10.1016/j.clinph.2011.01.040.
  11. Вильдавский В.Ю. Спектральные компоненты ЭЭГ и их функциональная роль в системной организации пространственно-гностической деятельности детей школьного возраста. Автореф. дис. …канд. биол. наук. – М.; 1996. 25 с. [Vil’davskii VY. Spektral’nye komponenty EEG i ikh funktsional’naya rol’ v sistemnoi organizatsii prostranstvenno-gnosticheskoi deyatel’nosti detei shkol’nogo vozrasta. [dissertation] Moscow; 1996. 25 p. (In Russ).]
  12. Развитие мозга и формирование познавательной деятельности ребенка / Под ред. Фарбера Д.А., Безруких М.М. – М.: Изд–во МПСИ; Воронеж: Изд–во МОДЕК; 2009. 432 с. [Razvitie mozga i formirovanie poznavatel’noi deyatel’nosti rebenka. Ed by Farbera D.A., Bezrukikh M.M. Moscow: Izd–vo MPSI; Voronezh: Izd–vo MODEK; 2009. 432 p. (In Russ).]
  13. Фефилов А.В. Возрастные особенности частотно-специфических характеристик ЭЭГ. Дис. … канд. психол. наук. – М.; 2003. 206 с. [Fefilov AV. Vozrastnye osobennosti chastotno-spetsificheskikh kharakteristik EEG. [dissertation] Moscow; 2003. 206 p. (In Russ).]
  14. Gasser T, Jennen-Steinmetz C, Sroka L, et al. Development of the EEG of school-age children and adolescents II. Topography. Electroencephalogr Clin Neurophysiol. 1988;69(2):100–109. doi: 10.1016/0013-4694(88)90205-2.
  15. Ritter BC, Perrig W, Steinlin M, Everts R. Cognitive and behavioral aspects of executive functions in children born very preterm. Child Neuropsychol. 2013;20(2):129–144. doi: 10.1080/09297049.2013.773968.
  16. Dykiert D, Der G, Starr JM, Deary IJ. Sex differences in reaction time mean and intraindividual variability across the life span. Dev Psychol. 2012;48(5):1262–1276. doi: 10.1037/a0027550.
  17. Flatters I, Hill LJB, Williams JHG, et al. Manual control age and sex differences in 4 to 11 year old children. Plos One. 2014;9(2):e88692. doi: 10.1371/journal.pone.0088692.
  18. Schaadt G, Hesse V, Friederici AD. Sex hormones in early infancy seem to predict aspects of later language development. Brain and Lang. 2015;141:70–76. doi: 10.1016/j.bandl.2014.11.015.
  19. Eriksson M, Marschik PB, Tulviste T, et al. Differences between girls and boys in emerging language skills: Evidence from 10 language communities. Br J Dev Psychol. 2012;30(2):326–343. doi: 10.1111/j.2044-835X.2011.02042.x.
  20. Lust JM, Geuze RH, Van de Beek C, et al. Sex specific effect of prenatal testosterone on language lateralization in children. Neuropsychologia. 2010;48(2):536–540. doi: 10.1016/j.neuropsychologia.2009.10.014.
  21. Щербаков Е.П., Ветренко С.В. Восприятие информации у девочек и мальчиков 5−10 лет в зависимости от ведущего полушария // Омский научный вестник. – 2007. – Т.4. – №58. – С. 121−124. [Shcherbakov EP, Vetrenko SV. 5-10 year-old boys and girls’ perception of information according to the leading cerebral hemispheres. Omskii nauchnyi vestnik. 2007;4(58):121−124. (In Russ).]
  22. García BMI, Tello HFP, Abad VE, et al. Attitudes, learning experience and performance in mathematics: gender differences. Psicothema. 2007;19(3):413–421.
  23. Уразаев К.Ф., Уразаева Ф.Х., Сайфутдинова И.Ф., Кисленко О.В. Половые различия латерализации мозга младших школьников // Успехи современного естествознания. – 2007. – №9. – С. 64–65. [Urazaev KF, Urazaeva FK, Saifutdinova IF, Kislenko OV. Polovye razlichiya lateralizatsii mozga mladshikh shkol’nikov. Uspekhi sovremennogo estestvoznaniya. 2007;9:64–65. (In Russ).]
  24. Hu S, Pruessner JC, Coupe P. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence. Neuroimage. 2013;74:276–287. doi: 10.1016/j.neuroimage.2013.02.032.
  25. Schmithorst VJ, Yuan W. White matter development during adolescence as shown by diffusion MRI. Brain Cogn. 2010;72(1):16–25. doi: 10.1016/j.bandc.2009.06.005.
  26. Clayden JD, Jentschke S, Munoz M, et al. Normative development of white matter tracts: similarities and differences in relation to age, gender, and intelligence. Cereb Cortex. 2012;22(8):1738−1747. doi: 10.1093/cercor/bhr243.
  27. Kumar R, Nguyen HD, Macey PM, et al. Regional brain axial and radial diffusivity changes during development. J Neurosci Res. 2012;90(2):346−355. doi: 10.1002/jnr.22757.
  28. Guo XJ, Jin Z, Chen K, et al. Gender differences in brain development in Chinese children and adolescents: a structural MRI study. Medical Imaging. 2008: physiology, function, and structure from medical image. 2008;6916:A9160. doi: 10.1117/12.770299.
  29. Uematsu A, Matsui M, Tanaka C, et al. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. Plos One. 2012;7(10):e46970. doi: 10.1371/journal.pone.0046970.
  30. Tanaka-Arakawa MM, Matsui M, Tanaka C, et al. Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study. Plos One. 2015;10(3):e0118760. doi: 10.1371/journal.pone.0118760.
  31. Cragg L, Kovacevic N, McIntosh AR, et al. Maturation of EEG power spectra in early adolescence: a longitudinal study. Developmental Science. 2011;14(5):935–943. doi: 10.1111/j.1467-7687.2010.01031.x.
  32. Benninger C, Matthis P, Scheffner D. EEG development of healthy boys and girls. Results of a longitudinal study. Electroencephalogr Clin Neurophysiol. 1984;57(1):1−12. doi: 10.1016/0013-4694(84)90002-6.
  33. Сороко С.И., Бекшаев С.С., Рожков В.П., и др. Общие закономерности формирования волновой структуры паттерна ЭЭГ у детей и подростков, проживающих в условиях Европейского Севера // Физиология человека. – 2015. – Т. 41. – №4. –
  34. С. 1–11. [Soroko SI, Bekshaev SS, Rozhkov VP, et al. General features of the formation of EEG wave structure in children and adolescents living in Northern European Russia. Fiziologiya cheloveka. 2015;41(4):1–11. (In Russ).]
  35. Койчубеков Б.К., Сорокина М.А., Мхитарян К.Э. Определение размера выборки при планировании научного исследования // Международный журнал прикладных и фундаментальных исследований. – 2014. – №4. – С. 71−74. [Koichubekov BK, Sorokina MA, Mkhitaryan KE. Sample size determination in planning of scientific research. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2014;4:71−74. (In Russ).]
  36. Бюллетень Федеральной службы государственной статистики: Численность населения Российской Федерации по полу и возрасту на 1 января 2014 года. [Byulleten’ Federal’noi sluzhby gosudarstvennoi statistiki: Chislennost’ naseleniya Rossiiskoi Federatsii po polu i vozrastu na 1 yanvarya 2014 goda. (In Russ).] Доступно по: http://www.gks.ru/bgd/regl/b14_111/Main.htm Ссылка активна на 12.01.2016.
  37. Gmehlin D, Thomas C, Weisbrod M, et al. Individual analysis of EEG background-activity within school age: impact of age and sex within a longitudinal data set. Int J Dev Neurosci. 2011;29(2):163−170. doi: 10.1016/j.ijdevneu.2010.11.005.
  38. Vinogradova OS, Kitchigina VF, Zenchenko CI. Pacemaker neurons of the forebrain medical septal area and theta rhythm of the hippocampus. Membr Cell Biol. 1998;11(6):715.
  39. Suffczynski P, Kalitzin S, Pfurtscheller G, et al. Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. Int J Psychophysiol. 2001;43(1):25-40. doi: 10.1016/s0167-8760(01)00177-5.
  40. Безруких М.М., Мачинская Р.И., Фарбер Д.А. Структурно-функциональная организация развивающегося мозга и формирование познавательной деятельности в онтогенезе ребенка // Физиология человека. – 2009. – Т. 35. – №6. –
  41. С. 10–24. [Bezrukikh MM, Machinskaya RI, Farber DA. Structural and functional organization of a developing brain and formation of cognitive functions in child ontogeny. Fiziologiya cheloveka. 2009;35(6):10–24. (In Russ).]

Views

Abstract - 60

PDF (Russian) - 23

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies