Cover Page


Bradykinin level is increased in myocardium in response to short-term ischemia/reperfusion that is one of the evidences of its trigger role in ischemic preconditioning (IP). Pharmacological induced increase of endogenous bradykinin and kallidin-like peptide levels in myocardium enhances cardiac tolerance to impact of ischemia / reperfusion. Experiments with genetically modified mice indicate that kinins are involved in preconditioning but they are not the only trigger of IP. The B2-receptor blocking abolishes antiarrhythmic, infarct reducing effects of preconditioning, eliminates IP-induced cardiac tolerance to oxidative stress. Exogenous bradykinin mimics inotropic and cardioprotective effects of IP but does not mimic antiarrhythmic effect of preconditioning. The intracoronary or intravenous bradykinin infusion enhances human heart resistance to ischemia/reperfusion. Implementation of the cardioprotective effect of IP is provided by the activation of multiple signaling pathways that involve: B2-receptor, calcitonin gene-related peptide, NO-synthase, guanylyl cyclase, cGMP, protein kinase G, mitochondrial KATP channels, reactive oxygen species, kinases C, ERK and Akt. To increase of the human heart tolerance to ischemia/reperfusion is necessary to develop B2-receptor agonists devoid hypotensive and pro-inflammatory properties.


About the authors

L. N. Maslov

Research Institute for Cardiology, Tomsk, Russian Federation
National Research Tomsk Polytechnic University, Russian Federation

Author for correspondence.

Russian Federation

доктор медицинских наук, профессор, руководитель лаборатории экспериментальной
кардиологии НИИ кардиологии; доцент кафедры экономики природопользования Национального исследовательского Томского политехнического университета
Адрес: 634012, Томск, ул. Киевская, д. 111А, тел.: +7 (3822) 26-21-74

N. V. Naryzhnaya

Research Institute for Cardiology, Tomsk, Russian Federation
National Research Tomsk Polytechnic University, Russian Federation


Russian Federation

кандидат медицинских наук, старший научный сотрудник лаборатории экспериментальной кардиологии НИИ кардиологии
Адрес: 634012, Томск, ул. Киевская, д. 111А, тел.: +7 (3822) 26-21-74

Yu. K. Podoksenov

Research Institute for Cardiology, Tomsk, Russian Federation


Russian Federation

доктор медицинских наук, руководитель отделения реанимации НИИ кардиологии
Адрес: 634012, Томск, ул. Киевская, д. 111А, тел.: +7 (3822) 26-21-74

A. S. Gorbunov

Research Institute for Cardiology, Tomsk, Russian Federation


Russian Federation

кандидат медицинских наук, младший научный сотрудник лаборатории экспериментальной кардиологии НИИ кардиологии
Адрес: 634012, Томск, ул. Киевская, д. 111А, тел.: +7 (3822) 26-21-74

Y. Zhang

Hebei Medical University, Shijiazhuang, China



доктор философии, профессор и директор отдела физиологии Хебейского медицинского университета
Адрес: Hebei Medical University, 361 East zhongshan Road, Shijiazhuang 050017, China

J.-M. Pei

Fourth Military Medical University, Xi'an, Shaanxi Province, China



доктор философии, профессор отдела физиологии Четвертого Военно-медицинского университета
Адрес: Fourth Military Medical University, No 169, West Changle Road, Xi'an 710032, Shaanxi Province, China


  1. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74 (5): 1124–1136.
  2. Kakoki M., Smithies O. The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int. 2009; 75 (10): 1019–1030.
  3. Heitsch H. The therapeutic potential of bradykinin B2 receptor agonists in the treatment of cardiovascular disease. Exp. Opin. Investig. Drugs. 2003; 12 (5): 759–770.
  4. Messadi-Laribi E., Griol-Charhbili V., Gaies E., Vincent M.P., Heudes D., Meneton P., Alhenc-Gelas F., Richer C. Cardioprotection and kallikrein-kinin system in acute myocardial ischaemia in mice. Clin. Exp. Pharmacol. Physiol. 2008; 35 (4): 489–493.
  5. Leeb-Lundberg L.M., Marceau F., Müller-Esterl W., Pettibone D.J., Zuraw B.L. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 2005; 57 (1): 27–77.
  6. Maslov L.N., Lishmanov Yu.B., Solenkova N.V. Adaptation of myocardial ischemia. First phase of ischemic preconditioning. Uspekhi fiziologicheskikh nauk = Achievements of physiological sciences. 2006; 37 (3): 25–41.
  7. Parratt J.R., Vegh A., Zeitlin I.J., Ahmad M., Oldroyd K., Kaszala K., Papp J.G. Bradykinin and endothelial cardiac myocyte interactions in ischemic preconditioning. Am. J. Cardiol. 1997; 80 (3): 124–131.
  8. Schulz R., Post H., Vahlhaus C., Heusch G. Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation. 1998; 98 (10): 1022–1029.
  9. Hartman J.C., Wall T.M., Hullinger T.G., Shebuski R.J. Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin antagonist HOE 140. J. Cardiovasc. Pharmacol. 1993; 21 (6): 996–1003.
  10. Miki T., Miura T., Ura N., Ogawa T., Suzuki K., Shimamoto K., Iimura O. Captopril potentiates the myocardial infarct size–limiting effect of ischemic preconditioning through bradykinin B2 receptor activation. J. Am. Coll. Cardiol. 1996; 28 (6): 1616–1622.
  11. Nakano A., Miura T., Miki T., Nozawa Y., Ichikawa Y., Ura N., Shimamoto K. Effects of neutral endopeptidase 24.11 inhibition on myocardial infarct size and ischemic preconditioning in rabbits. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2002; 366 (4): 335–342.
  12. Liu X., Lukasova M., Zubakova R., Lewicka S., Hilgenfeldt U. Kallidin-like peptide mediates the cardioprotective effect of the ACE inhibitor captopril against ischaemic reperfusion injury of rat heart. Brit. J. Pharmacol. 2006; 148 (6): 825–832.
  13. Yang X.P., Liu Y.H., Scicli G.M., Webb C.R., Carretero O.A. Role of kinins in the cardioprotective effect of preconditioning: study of myocardial ischemia/reperfusion injury in B2 kinin receptor knockout mice and kininogen-deficient rats. Hypertension. 1997; 30 (3 Pt. 2): 735–740.
  14. Griol-Charhbili V., Messadi-Laribi E., Bascands J.L., Heudes D., Meneton P., Giudicelli J.F., Alhenc-Gelas F., Richer C. Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia. FASEB J. 2005; 19 (9): 1172–1174.
  15. Vegh A., Papp J.G., Parratt J. Attenuation of the antiarrhythmic effects of ischaemic preconditioning by blockade of bradykinin B2 receptors. Brit. J. Pharmacol. 1994; 113 (4): 1167–1172.
  16. Miura T., Ishimoto R., Sakamoto J., Tsuchida A., Suzuki K., Ogawa T., Shimamoto K., Iimura O. Suppression of reperfusion arrhythmia by ischemic preconditioning in the rat: is it mediated by the adenosine receptor, prostaglandin, or bradykinin receptor? Basic Res. Cardiol. 1995; 90 (3): 240–246.
  17. Driamov S., Bellahcene M., Ziegler A., Barbosa V., Traub D., Butz S., Buser P.T., Zaugg C.E. Antiarrhythmic effect of ischemic preconditioning during low flow ischemia. The role of bradykinin and sarcolemmal versus mitochondrial ATP-sensitive K+ channels. Basic Res. Cardiol. 2004; 99 (4): 299–308.
  18. Wall T.M., Sheehy R., Hartman J.C. Role of bradykinin in myocardial preconditioning. J. Pharmacol. Exp. Ther. 1994; 270 (2): 681–689.
  19. Goto M., Liu Y., Yang X.M., Ardell J.L., Cohen M.V., Downey J.M. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ. Res. 1995; 77 (3): 611–621.
  20. Jin Z.Q., Chen X. Bradykinin mediates myocardial ischaemic preconditioning against free radical injury in guinea-pig isolated heart. Clin. Exp. Pharmacol. Physiol. 1998; 25 (11): 932–935.
  21. Vegh A., Papp J.G., Szekeres L., Parratt J.R. Prevention by an inhibitor of the L-arginine-nitric oxide pathway of the antiarrhythmic effects of bradykinin in anaesthetized dogs. Brit. J. Pharmacol. 1993; 110 (1): 18–19.
  22. Sun W., Wainwright C.L. The potential antiarrhythmic effects of exogenous and endogenous bradykinin in the ischaemic rat heart in vivo. Coron. Artery Dis. 1994; 5 (6): 541–550.
  23. Driamov S.V., Bellahcene M., Butz S., Buser P.T., Zaugg C.E. Bradykinin is a mediator, but unlikely a trigger, of antiarrhythmic effects of ischemic preconditioning. J. Cardiovasc. Electrophysiol. 2007; 18 (1): 93–99.
  24. Bugge E., Ytrehus K. Bradykinin protects against infarction but does not mediate ischemic preconditioning in the isolated rat heart. J. Mol. Cell. Cardiol. 1996; 28 (12): 2333–2341.
  25. Starkopf J., Bugge E., Ytrehus K. Preischemic bradykinin and ischaemic preconditioning in functional recovery of the globally ischaemic rat heart. Cardiovasc. Res. 1997; 33 (1): 63–70.
  26. Feng J., Li H., Rosenkranz E.R. Bradykinin protects the rabbit heart after cardioplegic ischemia via NO-dependent pathways. Ann. Thorac. Surg. 2000; 70 (6): 2119–2124.
  27. Song Q.J., Li Y.J., Deng H.W. Cardioprotective effect of bradykinin-induced preconditioning mediated by calcitonin gene-related peptide in isolated rat heart. Acta Pharmacol. Sin. 1999; 20 (2): 162–166.
  28. Burgdorf C., Dendorfer A., Kurz T., Richardt G. Calcitonin generelated peptide does not interact with sympathetic activity in myocardial ischemia. Regul. Pept. 2005; 125 (1–3): 99–102.
  29. Cohen M.V., Yang X.M., Liu G.S., Heusch G., Downey J.M. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial KATP channels. Circ. Res. 2001; 89 (3): 273–278.
  30. Yoshida H., Kusama Y., Kodani E., Yasutake M., Takano H., Atarashi H., Kishida H., Takano T. Pharmacological preconditioning with bradykinin affords myocardial protection through NO-dependent mechanisms. Int. Heart J. 2005; 46 (5): 877–887.
  31. Oldenburg O., Qin Q., Krieg T., Yang X.M., Philipp S., Critz S.D., Cohen M.V., Downey J.M. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 2004; 286 (1): 468–476.
  32. Cohen M.V., Downey J.M. Is it time to translate ischemic preconditioning's mechanism of cardioprotection into clinical practice? J. Cardiovasc. Pharmacol. Ther. 2011; 16 (3–4): 273–280.
  33. Krieg T., Qin Q., Philipp S., Alexeyev M.F., Cohen M.V., Downey J.M. Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. Am. J. Physiol. Heart Circ. Physiol. 2004; 287 (6): 2606–2611.
  34. Philipp S., Critz S.D., Cui L., Solodushko V., Cohen M.V., Downey J.M. Localizing extracellular signal regulated kinase (ERK) in pharmacological preconditioning's trigger pathway. Basic Res. Cardiol. 2006; 101 (2): 159–167.
  35. Cohen M.V., Philipp S., Krieg T., Cui L., Kuno A., Solodushko V., Downey J.M. Preconditioning mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. J. Mol. Cell. Cardiol. 2007; 42 (4): 842–851.
  36. Maslov L.N., Khedrik Dzh.P., Meshoulam R., Krylatov A.V., Lishmanov A.Yu., Barzakh E.I., Naryzhnaya N.V., Zhang I. The role of receptor transactivation cardioprotective Effects of preconditioning and postconditioning. Rossiiskii fiziologicheskii zhurnal = Russian physiological journal. 2012; 98 (3): 305–317.34.
  37. Feng J., Bianchi C., Sandmeyer J.L., Sellke F.W. Bradykinin preconditioning improves the profile of cell survival proteins and limits apoptosis after cardioplegic arrest. Circulation. 2005; 112 (9): 190–195.
  38. Halestrap A.P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem. Soc. Trans. 2006; 34 (Pt. 2): 232–237.
  39. Maslov L.N., Mrochek A.G., Shchepetkin I.A., Khedrik Dzh.P., Khanush L., Barzakh E.I., Lishmanov A.Yu., Gorbunov A.S., Tsibul'nikov S.Yu., Baikov A.N. The role of protein kinases in the formation of an adaptive phenomenon of ischemic postconditioning of the heart. Rossiiskii fiziologicheskii zhurnal = Russian physiological journal. 2013; 99 (4): 433–452.
  40. Kandal E.S., Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp. Cell. Res. 1999; 253 (1): 210–229.
  41. Feng J., Bianchi C., Li J., Sellke F.W. Bradykinin preconditioning preserves coronary microvascular reactivity during cardioplegia reperfusion. Ann. Thorac. Surg. 2005; 79 (3): 911–916.
  42. Cugno M., Nussberger J., Biglioli P., Alamanni F., Coppola R., Agostoni A. Increase of bradykinin in plasma of patients undergoing cardiopulmonary bypass: the importance of lung exclusion. Chest. 2001; 120 (6): 1776–1782.
  43. Campbell D.J., Dixon B., Kladis A., Kemme M., Santamaria J.D. Activation of the kallikrein–kinin system by cardiopulmonary bypass in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001; 281 (4): 1059–1070.
  44. Leesar M.A., Jneid H., Tang X.L., Bolli R. Pretreatment with intracoronary enalaprilat protects human myocardium during percutaneous coronary angioplasty. J. Am. Coll. Cardiol. 2007; 49 (15): 1607–1610.
  45. Ungi I., Pálinkás A., Nemes A., Ungi T., Thury A., Sepp R., Horváth T., Forster T., Végh A. Myocardial protection with enalaprilat in patients unresponsive to ischemic preconditioning during percutaneous coronary intervention. Can. J. Physiol. Pharmacol. 2008; 86 (12): 827–834.
  46. Leesar M.A., Stoddard M.F., Manchikalapudi S., Bolli R. Bradykinin induced preconditioning in patients undergoing coronary angioplasty. J. Am. Coll. Cardiol. 1999; 34 (3): 639–650.
  47. Wei M., Wang X., Kuukasjärvi P., Laurikka J., Rinne T., Honkonen E.L., Tarkka M. Bradykinin preconditioning in coronary artery bypass grafting. Ann. Thorac. Surg. 2004; 78 (2): 492–497.
  48. Wang X., Wei M., Kuukasjärvi P., Laurikka J., Rinne T., Moila-nen E., Tarkka M. The anti-inflammatory effect of bradykinin preconditioning in coronary artery bypass grafting (bradykinin and preconditioning). Scand. Cardiovasc. J. 2009; 43 (1): 72–79.



Abstract - 645

PDF (Russian) - 757


Article Metrics

Metrics Loading ...



Comments on this article

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies