Mathematical Modeling of the Blood Glucose Regulation System in Diabetes Mellitus Patients

Cover Page

Abstract


Interest in the mathematical modeling of the carbohydrate metabolism regulation system increases in recent years. This is associated with a «closed loop» insulin pump development (it controls an insulin infusion depending on the blood glucose level). To create an algorithm for the automatic control of insulin (and other hormones) infusion using an insulin pump it is necessary to accurately predict glycaemia level. So, the primary objective of mathematical modeling is to predict the blood glucose level changes, caused by the wide range of external factors. This review discusses the main mathematical models of blood glucose level control physiological system (simplified insulin–glucose system). The two major classes of models — empirical and theoretical — are described in detail. The ideal mathematical model of carbohydrate metabolism regulatory system is absent. However, the success in the field of blood glucose level control modeling and simulating is essential for the further development of diabetes prevention and treatment technologies, and creating an artificial pancreas in particular.


V. A. Karpel’ev

Endocrinology Research Centre, Moscow, Russian Federation

Author for correspondence.
Email: enprt@mail.ru

Russian Federation

научный сотрудник Института диабета ФГБУ «Эндокринологический научный центр» Минздрава России Адрес: 117036, Москва, ул. Дмитрия Ульянова, д. 11

Yu. I. Filippov

Endocrinology Research Centre, Moscow, Russian Federation

Email: yuriyivanovich@gmail.com

Russian Federation

научный сотрудник отделения программного обучения и лечения Института диабета ФГБУ «Эндокринологический научный центр» Минздрава России Адрес: 117036, Москва, ул. Дмитрия Ульянова, д. 11, тел.: +7 (926) 329-47-23

Yu. V. Tarasov

Endocrinology Research Centre, Moscow, Russian Federation

Email: yu.v.tarasov@gmail.com

Russian Federation

научный сотрудник Института диабета ФГБУ «Эндокринологический научный центр» Минздрава России Адрес: 117036, Москва, ул. Дмитрия Ульянова, д. 11

M. D. Boyarsky

Endocrinology Research Centre, Moscow, Russian Federation

Email: mia.letum@gmail.com

Russian Federation

научный сотрудник Института диабета ФГБУ «Эндокринологический научный Центр» Минздрава России Адрес: 117036, Москва, ул. Дмитрия Ульянова, д. 11

A. Yu. Mayorov

Endocrinology Research Centre, Moscow, Russian Federation

Email: education@endocrincentr.ru

Russian Federation

доктор медицинских наук, заведующий отделением программного обучения и лечения Института диабета ФГБУ «Эндокринологический научный центр» Минздрава России; доцент кафедры диабетологии и эндокринологии педиатрического факультета Первого МГМУ им. И.М. Сеченова Адрес: 117036, Москва, ул. Дмитрия Ульянова, д. 11, тел.: +7 (499) 124-35-00

M. V. Shestakova

Endocrinology Research Centre, Moscow, Russian Federation

Email: nephro@endocrincentr.ru

Russian Federation

доктор медицинских наук, профессор, член-корреспондент РАН, директор
Института диабета ФГБУ «Эндокринологический научный центр» Минздрава России, заведующая кафедрой эндокринологии и диабетологии педиатрического факультета Первого МГМУ им. И.М. Сеченова Адрес: 117036, Москва, ул. Дмитрия Ульянова, д. 11

I. I. Dedov

Endocrinology Research Centre, Moscow, Russian Federation

Email: dedov@endocrincentr.ru

Russian Federation

академик РАН, директор ФГБУ «Эндокринологический научный центр» Минздрава России Адрес: 117036, Москва, ул. Дмитрия Ульянова, д. 11, тел.: +7 (499) 124-43-00

  1. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 1993; 329 (14): 977–986. doi: 10.1056/NEJM199309303291401.
  2. Doyle F.J., Jovanovic L., Seborg D.E., Parker R.S., Bequette B.W. A tutorial on biomedical process control. J. Process Control. 2007; 17: 571–572. doi: 10.1016/j.jprocont.2007.01.012.
  3. Balakrishnan N.P., Rangaiah G.P., Samavedham L. Review and analysis of blood glucose (BG) models for type 1 diabetic patients. Ind. Eng. Chem. Res. 2011; 50 (21): 12041–12066. doi: 10.1021/ie2004779.
  4. Boutayeb A., Chetouani A. A critical review of mathematical models and data used in diabetology. Biomed. Engineer. Online. 2006; 5: 43. doi: 10.1186/1475-925X-5-43.
  5. Makroglou A., Li J., Kuang Y. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl. Num. Math. 2006; 56: 559–573. doi: 10.1016/j.apnum.2005.04.023.
  6. Cobelli C., Dalla Man C., Sparacino G., Magni L., De Nicolao G., Kovatchev B. Diabetes: models, signals and control. IEEE Rev. Biomed. Engineer. 2009; 2: 54–96. doi: 10.1109/RBME.2009.2036073.
  7. Gomenyuk S.M., Emel'yanov A.O., Karpenko A.P., Chernetsov S.A. Review of methods and systems for predicting the optimum dose of insulin for patients with type 1 diabetes. Informatsionnye tekhnologii = Information technologies. 2010;(3):48–57.
  8. Palumbo P., Ditlevsen S., Bertuzzi A., De Gaetano A. Mathematical modeling of the glucose insulin system: a review. Math. Biosci. 2013; 244 (2): 69–81. doi: 10.1016/j.mbs.2013.05.006.
  9. Bremer T., Gough D.A. Is blood glucose predictable from previous values? A solicitation for data. Diabetes. 1999; 48: 445–451. doi: 10.2337/diabetes.48.3.445.
  10. Reifman J., Rajaraman S., Gribok A., Ward W.K. Predictive monitoring for improved management of glucose levels. J. Diabet. Sci Technol. 2007; 1 (4): 478–486.
  11. Sparacino G., Zanderigo F., Corazza S., Maran A., Facchinetti A., and Cobelli C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time series. IEEE Transact. Biomed. Engineer. 2007; 54 (5): 931–937. doi: 10.1109/TBME.2006.889774.
  12. Van Herpe T., Espinoza M., Pluymers B., Wouters P., De Smet F., Van Berghe G., et al. Development of a critically ill patient input output model. Proceedings 14th IFAC Symposium on System Indentification (SYSID 2006). Newcastle. Australia. 2006: 481–486. doi: 10.3182/20060329-3-AU-2901.00073.
  13. Van Herpe T., Espinoza M., Pluymers B., Goethals I., Wouters P., Van den Berghe G., and De Moor B. An adaptive input output modeling approach for predicting the glycemia of critically ill patients. Physiol. Meas. 2006; 27 (11): 1057–1069. doi: 10.1088/0967-3334/27/11/001.
  14. Finan D.A., Doyle F.J., Palerm C.C., Bevier W.C., Zisser H.C. Experimental evaluation of a recursive model identification technique for type 1 diabetes. J. Diabetes Sci Technol. 2009; 3 (5): 1192–1202. doi: 10.1177/193229680900300526.
  15. Hovorka R., Shojaee-Moradie F., Carroll P.V., Chassin L.J., Gowrie I.J., Jackson N.C. Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am. J. Physiol. Endocrinol. Metabol. 2002; 282 (5): E992–1007. doi: 10.1152/ajpendo.00304.2001.
  16. Hovorka R., Canonico V., Chassin L.J., Haueter U., Massi-Benedetti M., Orsini F.M. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 2004; 25 (4): 905–920. doi: 10.1088/0967-3334/25/4/010.
  17. Eren-Oruklu M., Cinar A., Quinn L., Smith D. Adaptive control strategy for regulation of blood glucose levels in patients with type 1 diabetes. J. Process. Control. 2009; 19: 1333–1346. doi: 10.1016/j.jprocont.2009.04.004.
  18. Eren-Oruklu M., Cinar A., Quinn L. Hypoglycemia prediction with subject-specific recursive time-series models. J. Diabet. Sci Technol. 2010; 4 (1): 25–33. doi: 10.1177/193229681000400104.
  19. Kazama Y., Takamura T., Sakurai M., Shindo H., Ohkubo E., Aida K., Harii N., Taki K., Kaneshige M., Kobayashi T. New insulin sensitivity index from the oral glucose tolerance test. Diabetes Res. Clin. Pract. 2008; 79 (1): 24–30. DOI: 10.1016/j. diabres.2007.05.005.
  20. Gani A., Gribok A.V., Lu Y., Ward W.K., Vigersky R.A., Reifman J. Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Eng. Med. Biol. Soc. 2010; 14 (1):157–165. doi: 10.1109/TITB.2009.2034141.
  21. Mitsis G.D., Marmarelis V.Z. Nonlinear modeling of glucose metabolism: comparison of parametric vs. nonparametric methods. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007; 2007: 5968–5971. doi: 10.1109/IEMBS.2007.4353707.
  22. Bergman R.N., Ider Y.Z., Bowden C.R., Cobelli C. Quantitative estimation of insulin sensitivity. Am. J. Physiol. 1979; 236 (6):667–677.
  23. Ghosh S., Maka S. A NARX modeling based approach for evaluation of insulin sensitivity. Biomed. Signal Processing and Control. 2009; 4: 49–56. doi: 10.1016/j.bspc.2008.08.002.
  24. Rollins D.K., Bhandari N., Kotz K.R. Critical modeling issues for successful feedforward control of blood glucose in insulin dependent diabetics. American Control Conference. 2008. Р. 832–837.
  25. Rollins D.K., Bhandari N., Kleinedler J., Kotz A., Strohbehn L., Boland M., Murphy D., Andre N., Vyas G., Welk W.E. Franke free living inferential modeling of blood glucose level using only noninvasive inputs. J. Process Control. 2010; 20 (1): 95–107. doi: 10.1016/j.jprocont.2009.09.008.
  26. Sandham W.A., Hamilton D.J., Japp A., Patterson K. Neural network and neuro-fuzzy systems for improving diabetes therapy. IEEE Eng. Med. Biol. Soc. 1998; 20: 1438–1441.
  27. Tresp V., Briegel T., Moody J. Neural network models for the blood glucose metabolism of a diabetic. IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council. 1999; 10 (5): 1204–1213. doi: 10.1109/72.788659.
  28. Ghevondian N., Nguyen H. Modelling of blood glucose profiles non invasively using a neural network algorithm. Proceedngs of the first Joint BMES/EMBS Conference, Serving Humanity, Advancing Technology. 1999; 2: 928. doi: 10.1109/IEMBS.1999.804082.
  29. Mougiakakou S.G., Prountzou A., Iliopoulou D., Nikita K.S., Vazeou W. Neural network based glucose – insulin metabolism models for children with Type 1 diabetes. IEEE Eng. Med. Biol. Soc. 2006; 1: 3545–3548. doi: 10.1109/IEMBS.2006.260640.
  30. Kotanko P., Heissl H., Trajanoski Z., Wach P., Skrabal F. Blood glucose forecasting in patients with insulin dependent diabetes mellitus with the universal process modeling algorithm. Proceed. Annu. Int. Conf. IEEE. 1992: 898–899. doi: 10.1109/IEMBS.1992.5761297.
  31. Bolie V.W. Coefficients of normal blood glucose regulation. J. Appl. Physiol. 1961; 16: 783–788.
  32. Ackerman E., Gatewood L.C., Rosevear J.W., Molnar G.D. Model studies of blood glucose regulation. Bull. Math. Biophys. 1965; 27:21–37. doi: 10.1007/BF02477259.
  33. Toffolo G., Bergman R.N., Finegood D.T., Bowden C., Cobelli C. Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog.Diabetes. 1980; 29 (12): 979–990.
  34. Bergman R.N., Phillips L.S., Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta cell glucose sensitivity from the response to intravenous glucose. J. Clin. Inv. 1981; 68 (6): 1456–1467. doi: 10.1172/JCI110398.
  35. Pacini G., Bergman R.N. MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput. Methods Programs Biomed. 1986; 23 (2): 113–122.
  36. Bergman R.N. Minimal model: perspective from 2005. Horm. Res. 2005; 64 (Suppl. 3): 8–15. doi: 10.1159/000089312.
  37. Furler S.M., Kraegen E.W., Smallwood R.H., Chisholm D.J. Blood glucose control by intermittent loop closure in the basal mode: computer simulation studies with a diabetic model. Diabet. Care. 1985; 8 (6): 553–561. doi: 10.2337/diacare.8.6.553.
  38. Ollerton R.L. Application of optimal control theory to diabetes mellitus. Int. J. Control. 1989; 50 (6): 2503–2522. doi: 10.1080/00207178908953512.
  39. Fisher M.E. A semiclosed loop algorithm for the control of blood glucose levels in diabetics. IEEE Transact. Biomed. Engineering. 1991; 38 (1): 57–61. doi: 10.1109/10.68209.
  40. Lynch S.M., Bequette B.W. Model predictive control of blood glucose in type I diabetics using subcutaneous glucose measurements. Proceed. Am. Control Conf. 2002; 5: 4039–4043. doi: 10.1109/ACC.2002.1024561.
  41. Van Herpe T., Pluymers B., Espinoza M., Van den Berghe G., De Moor B. A minimal model for glycemia control in critically ill patients. IEEE Eng. Med. Biol. Soc. 2006; 1: 5432–5435. doi: 10.1109/IEMBS.2006.260613.
  42. Roy A., Parker R.S. Dynamic modeling of free fatty acid, glucose, and insulin: an extended «minimal model». Diabetes Technol. Ther. 2006; 8 (6): 617–626. doi: 10.1089/dia.2006.8.617.
  43. Roy A., Parker R.S. Dynamic modeling of exercise effects on plasma glucose and insulin levels. J. Diabet. Sci Technol. 2007; 1 (3):338–347.
  44. Quon M.J., Cochran C., Taylor S.I., Eastman R.C. Non insulin mediated glucose disappearance in subjects with IDDM. Discordance between experimental results and minimal model analysis. Diabetes. 1994; 43: 890–896.
  45. Saad M.F., Anderson R.L., Laws A., Laws A., Watanabe R.M., Kades W.W., Chen Y.D., Sands R.E. A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin Resistance Atherosclerosis Study. Diabetes. 1994; 43: 1114–1121.
  46. Cobelli C., Federspil G., Pacini G., Salvan A., Scandellari C. An integrated mathematical model of the dynamics of blood glucose and its hormonal control. Math. Biosci. 1982; 58: 27–60. doi: 10.1016/0025-5564(82)90050-5.
  47. Caumo A., Vicini P., Cobelli C. Is the minimal model too minimal? Diabetologia. 1996; 39: 997–1000. doi: 10.1007/BF00403922.
  48. Berger M., Rodbard D. Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. Diabetes Care. 1989; 12 (10): 725–736. doi: 10.2337/diacare.12.10.725.
  49. Lehmann E.D., Deutsch T. A physiological model of glucose insulin interaction in type 1 diabetes mellitus. J. Biomed. Eng. 1992; 14 (3): 235–242. doi: 10.1016/0141-5425(92)90058-S.
  50. Guyton J.R., Foster R.O., Soeldner J.S., Tan M.H., Kahn C.B., Koncz L., Gleason R.E. A model of glucose-insulin homeostasis in man that incorporates the heterogeneous fast pool theory of pancreatic insulin release. Diabetes. 1978; 27: 1027–1042. doi: 10.2337/diab.27.10.1027.
  51. Lehmann E.D., Dewolf D.K., Novotny C.A., Reed K., Gotwals R.R. Dynamic interactive educational diabetes simulations using the World Wide Web: An experience of more than 15 years with AIDA online. Int. J. Endocrinol. 2014; 2014: 692893. doi: 10.1155/2014/692893.
  52. Sturis J., Polonsky K.S., Mosekilde E., Van Cauter E. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am. J. Physiol. 1991; 260 (5 Pt 1): E801–809.
  53. Tolić I.M., Mosekilde E., Sturis J. Modeling the insulin glucose feedback system: the significance of pulsatile insulin secretion. J. Theor. Biol. 2000; 207 (3): 361–375. doi: 10.1006/jtbi.2000.2180.
  54. Li J., Kuang Y., Mason C.C. Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J. Theor. Biol. 2006; 242 (3): 722–735. doi: 10.1016/j.jtbi.2006.04.002.
  55. Chen C.L, Tsai H.W. Modeling the physiological glucose insulin system on normal and diabetic subjects. Comput. Methods Programs Biomed. 2010; 97 (2): 130–140. doi: 10.1016/j.cmpb.2009.06.005.
  56. Wilinska M.E., Chassin L.J., Schaller H.C., Schaupp L., Pieber T., Hovorka R. Insulin kinetics in type I diabetes: continuous and bolus delivery of rapid acting insulin. IEEE Transact. Biomed. Engineering. 2005; 52 (1): 3–12. doi: 10.1109/TBME.2004.839639.
  57. Galvanin F., Barolo M., Macchietto S., Bezzo F. Optimal design of clinical tests for the identification of physiological models of type 1 diabetes. Ind. Eng. Chem. Res. 2009; 48: 1989–2002. doi: 10.1021/ie801209g.
  58. Fabietti P.G., Canonico V., Federici M.O., Benedetti M.M., Sarti E. Control oriented model of insulin and glucose dynamics in type 1 diabetics. Med. Biol. Eng. Comput. 2006; 44 (1–2): 69–78. doi: 10.1007/s11517-005-0012-2.
  59. Regittnig W., Trajanoski Z., Leis H.J., Ellmerer M., Wutte A., Sendlhofer G. Plasma and interstitial glucose dynamics after intravenous glucose injection: evaluation of the single compartment glucose distribution assumption in the minimal models. Diabetes. 1999; 48 (5): 1070–1081.
  60. Arleth T., Andreassen S., Federici M.O., Benedetti M.M. A model of the endogenous glucose balance incorporating the characteristics of glucose transporters. Comput. Methods Programs Biomed. 2000; 62 (3): 219–234. doi: 10.1016/S0169-2607(00)00069-9.
  61. Fabietti P.G., Canonico V., Orsini-Federici M., Sarti E, Massi-Benedetti M. Clinical validation of a new control oriented model of insulin and glucose dynamics in subjects with type 1 diabetes. Diabetes Technol. Ther. 2007; 9 (4): 327–338. doi: 10.1089/dia.2006.0030.
  62. Dalla Man C., Rizza R.A., Cobelli C. Meal simulation model of the glucose insulin system. IEEE Transactions on Biomed. Engineer. 2007; 54 (10): 1740–1749. doi: 10.1109/TBME.2007.893506.
  63. Dalla Man C., Toffolo G., Basu R., Rizza R.A., Cobelli C. A model of glucose production during a meal. IEEE Eng. in Med. Biol. Soc. 2006; 1: 5647–5650. doi: 10.1109/IEMBS.2006.260809.
  64. Dalla Man C., Camilleri M., Cobelli C. A system model of oral glucose absorption: validation on gold standard data. IEEE Transactions on Biomed. Engineer. 2006; 53 (12 Pt. 1): 2472–2478. doi: 10.1109/TBME.2006.883792.
  65. Cobelli C., Mari A. Validation of mathematical models of complex endocrine-metabolic systems. A case study on a model of glucose regulation. Med. Biol. Eng. Comput. 1983; 21 (4): 390–399. doi: 10.1007/BF02442625.
  66. Cobelli C., Ruggeri A. Evaluation of portal/peripheral route and of algorithms for insulin delivery in the closed loop control of glucose in diabetes a modeling study. IEEE Transact. Biomed. Engineer. 1983; 30 (2): 93–103. doi: 10.1109/TBME.1983.325203.
  67. Breda E., Cavaghan M.K., Toffolo G., Polonsky K.S., Cobelli C. Oral glucose tolerance test minimal model indexes of beta cell function and insulin sensitivity. Diabetes. 2001; 50 (1): 150–158. doi: 10.2337/diabetes.50.1.150.
  68. Toffolo G., Breda E., Cavaghan M.K., Polonsky K.S.Quantitative indexes of beta cell function during graded up&down glucose infusion from C-peptide minimal models. Am. J. Physiol. Endocrinol. Metabol. 2001; 280 (1): 2–10.
  69. Dalla Man C., Raimondo D.M., Rizza R.A., Cobelli C. GIM, simulation software of meal glucose insulin model. J. Diabetes Sci. Technol. 2007; 1 (3): 323–330. doi: 10.1177/193229680700100303.
  70. Nucci G., Cobelli C. Models of subcutaneous insulin kinetics. A critical review. Comput. Methods Programs Biomed. 2000; 62 (3): 249–257.
  71. Dalla Man C., Micheletto F., Lv D., Breton M., Kovatchev B., Cobelli C. The UVA/PADOVA type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 2014; 8 (1): 26–34. doi: 10.1177/1932296813514502.
  72. Kovatchev B.P., Breton M., Dalla Man C., Cobelli C. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 2009; 3 (1): 44–55. doi: 10.1177/193229680900300106.
  73. Chan A., Heinemann L., Anderson S.M., Breton M.D., Kovatchev B.P. Nonlinear metabolic effect of insulin across the blood glucose range in patients with type 1 diabetes mellitus. J. iabetes Sci. Technol. 2010; 4 (4): 873–881. doi: 10.1177/193229681000400416.
  74. Tiran J., Galle K.R., Porte D. A simulation model of extracellular glucose distribution in the human body. Ann. Biomed. Eng. 1975; 3 (1): 34–46.
  75. Tiran J., Avruch L.I., Albisser A.M. A circulation and organs model for insulin dynamics. Am. J. Physiol. 1979; 237 (4): E331–339.
  76. Sorensen J.T. A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. Submitted to the Department of Chemical Engineering in partial fulfillment of the requirements for the Degree of Doctor of Science. Massachusetts Institute of Technology. Massachusetts. 1985. 556 p.
  77. Parker R.S., Doyle F.J., Peppas N.A. A model based algorithm for blood glucose control in type I diabetic patients. IEEE Transact. Biomed. Engineer. 1999; 46 (2): 148–157. doi: 10.1109/10.740877.
  78. Parker R.S., Doyle F.J., Ward J.H., Peppas N.A. Robust H [infinity] glucose control in diabetes using a physiological model. Am. Institute Chem. Engineers J. 2000; 46: 2537–2549. doi: 10.1002/aic.690461220.
  79. Eddy D.M., Schlessinger L. Archimedes: a trial validated model of diabetes. Diabetes Care. 2003; 26 (11): 3093–3101. doi: 10.2337/diacare.26.11.3093.
  80. Eddy D.M., Schlessinger L. Validation of the archimedes diabetes model. Diabetes Care. 2003; 26 (11): 3102–3110. doi: 10.2337/diacare.26.11.3102.

Views

Abstract - 121

PDF (Russian) - 52

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies