FUNDAMENTAL AND APPLIED ASPECTS OF THE BLOOD-BRAIN BARRIER RESEARCH

Cover Page
  • Authors: Chekhonin V.P.1, Baklaushev V.P.1, Yusubalieva G.M.1, Volgina N.E.1, Gurina O.I.2
  • Affiliations:
    1. Pirogov Russian National Medical Research University Ministry of Healthcare and Social Development of Russia, Moscow Federal State Institution «Serbsky State scientific centre of social and forensic psychiatry» Ministry of Healthcare and Social development, Moscow
    2. Federal State Institution «Serbsky State scientific centre of social and forensic psychiatry» Ministry of Healthcare and Social development, Moscow
  • Issue: Vol 67, No 8 (2012)
  • Pages: 66-78
  • Section: PROCEEDINGS OF THE RAMS SESSION
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/280
  • DOI: https://doi.org/10.15690/vramn.v67i8.352
  • Cite item

Abstract


The results of fundamental and applied studies of blood-brain barrier had been conducted by authors during the last 10 years are summarized in the publication. The molecular anatomy of barrier microvessels, as well as promising markers of BBB and other proteins involved in barrier functions are discussed. Via in vitro experiments with endothelial cells of cerebral microvessels we characterized the basic conditions required for adequate BBB modeling. The in vivo data of BBB permeability for macromolecules in normal and different pathological processis including radiation injury, hyperosmotic shock, and nervous tissue ischemia are properly described. A particular attention was focused upon the experimental studies of the permeability and functional reorganization of barrier endothelium during tumor neoangiogenesis. We detected a dramatically increased permeability of neoplastic microvessels both for horseradish peroxidase/serum albumin and labeled monoclonal antibodies. The increased tumor permeability for IgG and the overexpression of target antigens in tumor tissue and peritumoral zone make possible the targeted delivery of diagnostics and therapeutic agents into the tumor by means of monoclonal antibodies.

 


V. P. Chekhonin

Pirogov Russian National Medical Research University Ministry of Healthcare and Social Development of Russia, Moscow
Federal State Institution «Serbsky State scientific centre of social and forensic psychiatry» Ministry of Healthcare
and Social development, Moscow

Author for correspondence.
Email: chekhoninnew@yandex.ru

Russian Federation академик РАМН, доктор медицинских наук, профессор, академик-секретарь РАМН, руководитель отдела фундаментал ьной и прикладной нейробиологии ГНЦССП им. В.П. Сербского, руководитель отдела медицинских нанобиотехнологий РНИМУ им. Н.И. Пирог ова Адрес: 119991, Москва, Кропоткинский пер., д. 23 Тел.: (495) 695-02-62, факс: (495) 637-50-55

V. P. Baklaushev

Pirogov Russian National Medical Research University Ministry of Healthcare and Social Development of Russia, Moscow
Federal State Institution «Serbsky State scientific centre of social and forensic psychiatry» Ministry of Healthcare
and Social development, Moscow

Email: serpoff@mail.ru

Russian Federation кандидат медицинских наук, доцент кафедры медицинских нанобиотехно- логий РНИМУ им. Н.И. Пирогова, в.н.с. отдела фундаментальной и прикладной нейробиологии ГНЦССП им. В.П. Сербского Адрес: 119991, Москва, Кропоткинский пер., д. 23 Тел.: (495)695-02-62, факс (495)637-50-55

G. M. Yusubalieva

Pirogov Russian National Medical Research University Ministry of Healthcare and Social Development of Russia, Moscow
Federal State Institution «Serbsky State scientific centre of social and forensic psychiatry» Ministry of Healthcare
and Social development, Moscow

Email: kakonya@gmail.com

Russian Federation кандидат медицинских наук, ассистент кафедры медицинских нанобиотехно- логий РНИМУ им. Н.И. Пирогова, с.н.с. отдела фундаментальной и прикладной нейробиологии ГНЦССП им. В.П. Сербского Адрес: 119991, Москва, Кропоткинский пер., д. 23 Тел.: (495)695-02-62, факс (495)637-50-55

N. E. Volgina

Pirogov Russian National Medical Research University Ministry of Healthcare and Social Development of Russia, Moscow
Federal State Institution «Serbsky State scientific centre of social and forensic psychiatry» Ministry of Healthcare
and Social development, Moscow

Email: volginadi@gmail.com

Russian Federation аспирант кафедры медицинских нанобиотехнологий РНИМУ им. Н.И. Пирогова Адрес: 119991, Москва, Кропоткинский пер., д. 23 Тел.: (495)695-02-62, факс (495)637-50-55

O. I. Gurina

Federal State Institution «Serbsky State scientific centre of social and forensic psychiatry» Ministry of Healthcare
and Social development, Moscow

Email: olga672@yandex.ru

Russian Federation доктор медицинских наук, руководитель лаборатории нейрохимии отдела фундаментальной и прикладной нейробиологии ГНЦССП им. В.П. Сербского. Адрес: 119991, Москва, Кропоткинский пер., д. 23 Тел.: (495)695-02-62, факс (495)637-50-55.

  1. Wolburg H., Neuhaus J., Kniesel U. et al. Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. Journal of Cell Science 1994; 107: 1347–1357.
  2. Joo F. Endothelial cells of the brain and other organ systems: some similarities and differences. Prog Neurobiol. 1996; 48: 255–273.
  3. Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009; 1788(4): 842–857.
  4. Banks W.A., Erickson M.A. The blood-brain barrier and immune function and dysfunction. Neurobiol. Dis. 2010; 37(1): 26–32.
  5. Crone C. and Olesen S.P., Electrical resistance of brain microvascular endothelium. Brain Res. 1982; 241: 49–55.
  6. Rubin L.L., Hall D.E., Porter S. et al. A cell culture model of the blood-brain barrier. J. Cell Biol. 1991; 115: 1725–1735.
  7. Ribeiro M.M., Castanho M.A., Serrano I. In vitro blood-brain barrier models – latest advances and therapeutic applications in a chronological perspective. Medicinal Chemistry. 2010; 10: 263–271.
  8. Lawrenson J.G., Ghabriel M.N., Reid A.R. et al. Differential expression of an endothelial barrier antigen between the CNS and the PNS. J. Anat. 1995; 186: 217 221.
  9. Sternberger N.H, Sternberger L.A. Blood-brain barrier protein recognized by monoclonal antibody. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 8169-8173.
  10. Sternberger N.H., Sternberger L.A., Kies M.W., Shear C.R. Cell surface endothelial proteins altered in experimental allergic encephalomyelitis. J. Neuroimmunol. 1989; 21(2–3): 241–248.
  11. Rosenstein J.M., Krum J.M., Sternberger L.A. et al. Immunocytochemical expression of the endothelial barrier antigen (EBA) during brain angiogenesis. Dev. Brain Res. 1992; 66: 47–54.
  12. Lidinsky W.A. and Drewes L.R. Characterization of the blood-brain barrier: protein composition of the capillary endothelial cell membrane. J. Neurochem. 1983; 41(5): 1341–1348.
  13. Baklaushev V.P., Yusubalieva G.M., Gurina O.I., Chekhonin V.P. Combined immunoperoxidase analysis for visualization of cells of the blood-brain barrier. Bull Exp Biol Med. 2006; 142(4): 507–510.
  14. Aird W.C. Endothelial cell heterogeneity: a case for nature and nuture. Blood. 2004; 103(11): 3394–3995.
  15. Wolburg H., Neuhaus J., Kniesel U., Krauß B., Schmid E.-M., Öcalan M., Farrell C., Risau W. Modulation of tight junction structure in blood-brain barrier endothelial cells. Journal of Cell Science. 1994; 107: 1347–1357.
  16. Wolburg H. and Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc. Pharmacol. 2002; 38: 323–337.
  17. Rubin L.L. and Staddon J.M. The cell biology of the blood-brain barrier. Ann. Rev. Neurosci. 1999; 22: 11–28.
  18. Bazzoni G., Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol. Rew. 2004; 84: 869–901.
  19. Ribeiro M.M., Castanho M.A., Serano I. In vitro blood-brain barrier models – lastest advantages and therapeutic applications in a chronological perspective. Medical chemistry. 2010; 10: 263–271.
  20. Wilhelm I., Fazakas C., Krizbai I.A. In vitro models of the blood-brain barrier. Acta Neurobiol. Exp. 2011; 71: 113–128.
  21. Arthur F.E., Shivers R.R., Bowman P.D. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Developmental Brain Research. 1987; 36: 155–159.
  22. Abbott N.J. Astrocyte–endothelial interactions and blood–brain barrier permeability. J. Anat. 2002; 200: 629–638.
  23. Beese M., Wyss K., Haubitz M., Kirsch T. Effect of cAMP derivates on assembly and maintenance of tight junctions in human umbilical vein endothelial cells. BMC Cell Biology. 2010; 11: 68.
  24. Förster C., Waschke J., Burek M., Leers J., DrenckhahnD. Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. J. Physiol. 2006; 573: 413–425.
  25. Jaffe E.A., Nachman R.L., Becker C.G. & Minick C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 1973; 52: 2745–2756.
  26. Voyta J.C., Via D.P., Butterfield C.E., Zetter B.R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. The Journal of cell biology. 1984; 99: 2034–2040.
  27. Gurina O.I. Monoklonal'nye antitela k neirospetsificheskim antigenam. Poluchenie, immunokhimicheskii analiz, issledovanie pronitsaemosti gematoentsefalicheskogo bar'era. Diss. … d-ra med. nauk [Monoclonal antibodies to neurospecific antigens. Preparation, immunochemical analysis, blood-brain barrier permeability study. Author’s abstract]. Moscow, 2005. p. 319.
  28. Nag S., Kapadia A., Stewart D.J. Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl. Neurobiol. 2011; 37(1): 3–23.
  29. Yang Y., Rosenberg G.A. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011; 42(11): 3323–3328. Epub 2011 Sep 22.
  30. Chekhonin V.P., Lebedev S.V., Ryabukhin I.A. et al. Selective accumulation of monoclonal antibodies to enolase neuron in the brain tissue of rats with middle cerebral artery occlusion. Byulleten' eksperimental'noi biologii i meditsiny – Bulletin of Experimental Biology and Medicine. 2004; 10: 388–392.
  31. Coisne C., Engelhardt B. Tight junctions in brain barriers during central nervous system inflammation. Antioxid. Redox. Signal. 2011; 15(5): 1285–1303.
  32. Chekhonin V.P., Gurina O.I., Dmitrieva T.B. Monoklonal'nye antitela k neirospetsificheskim belkam [Monoclonal antibodies to proteins neurospecific]. Moscow, Meditsina, 2007. 344 p.
  33. Chekhonin V.P. Spetsificheskie belki nervnoi tkani cheloveka i zhivotnykh (identifikatsiya, vydelenie, fiziko-khimicheskaya kharakteristika i kliniko-laboratornye issledovaniya): Dis. … d-ra med. nauk [Specific proteins of the nervous tissue of humans and animals (identification, isolation, physico-chemical characteristics and clinical and laboratory studies): Author’s abstract]. Moscow, 1989.
  34. Chekhonin V.P., Baklaushev V.P., Yusubalieva G.M., Gurina O.I., Dmitrieva T.B. A targeted transport of 125I-labeled monoclonal antibodies to target proteins in experimental glioma focus. Dokl. Biochem. Biophys. 2008; 418: 40–43.
  35. Chekhonin V.P., Baklaushev V.P., Yusubalieva G.M., Gurina O.I. Targeted transport of 125I-labeled antibody to GFAP and AMVB1 in an experimental rat model of C6 glioma. J Neuroimmune Pharmacol. 2009; 4(1): 28–34.
  36. Baklaushev V.P., Yusubalieva G.M., Tsitrin E.B. et al. Visualization of Connexin 43-positive cells of glioma and the periglioma zone by means of intravenously injected monoclonal antibodies. Drug Deliv. 2011; 18(5): 331–337.
  37. Soria1 J.-C, Fayette1 J., Armand J.-P. Molecular targeting: Targeting angiogenesis in solid tumors. Ann. Oncol. 2004; 15: iv223–iv227.
  38. Carson-Walter E. B., Hampton J., Shue E. et al. Plasmalemmal vesicle associated protein-1 is a novel marker implicated in brain tumor angiogenesis. Clin. Cancer. Res. 2005; 11: 7643–7650.
  39. Grobben B., De Deyn P.P., Slegers H. Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res. 2002; 310: 257–270.
  40. Schlingemann R.O., Hofman P., Vrensen G.F. et al. Increased expression of endothelial antigen PAL-E in human diabetic retinopathy correlates with microvascular leakage. Diabetologia. 1999; 42: 596–602.
  41. Hallmann R., Mayer D. N., Berg E. L. et al. Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev. Dyn. 1995; 202: 325–332.
  42. Errede M., Benagiano V., Girolamo F. et al. Differential expression of connexin43 in foetal, adult and tumour-associated human brain endothelial cells. Histochem. J. 2002; 34: 265–271.
  43. Leenstra S., Troost D., Das P. K. et al. Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease. Cancer. 1993; 72: 3061–3067.
  44. Chekhonin V.P., Baklaushev V.P., Yusubalieva G.M. et al. Modeling and immunohistochemical analysis of C6 glioma in vivo. Bull. Exp. Biol. Med. 2007; 143(4): 501–509.
  45. Nagano N., Sasaki H., Aoyagi M., Hirakawa K. Invasion of experimental rat brain tumor: Early morphological changes following microinjection of C6 glioma cells. Acta. Neuropathol. 1993; 86: 117–125.
  46. Sternberger N.H., Sternberger L.A., Kies M.W., Shear C.R. Cell surface endothelial proteins altered in experimental allergic encephalomyelitis. J. Neuroimmunol. 1989; 21: 241–248.
  47. Zhu C., Ghabriel M.N., Blumbergs P.C. et al. Clostridium perfringens prototoxin-induced alteration of endothelial barrier antigen immunoreactivity at the blood-brain barrier. Exp. Neurol. 2001; 169: 72 82.
  48. Wolburg H., Lippoldt A. Tight junctions of the blood-brain barrier: Development, composition and regulation. Vasc. Pharmacol. 2002; 38: 323–337.
  49. Stewart L. A. Chemotherapy in adult high-grade glioma: A systematic review and meta-analysis of individual patient data from 12 randomized trials. Lancet. 2002; 359: 1011–1018.
  50. Zalutsky M. R. Current status of therapy of solid tumors: Brain tumor therapy. J. Nucl. Med. 2005; 46: 151S–156S.
  51. Bhattacharjee A.K., Nagashima T., Kondoh T., Tamaki N.Quantification of early blood–brain barrier disruption by in situ brain perfusion technique. Brain Research Protocols. 2001; 8: 126–131.
  52. Hawkins B.T., Egleton R.D. Fluorescence imaging of blood–brain barrier disruption. J. Neurosci. Meth. 2006; 151: 262–267.
  53. Bates D.C., Sin W.C., Aftab Q., Naus C.C. Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia. 2007; 55(15): 1554–1564.
  54. Prochnow N., Dermietzel R. Connexons and cell adhesion: a romantic phase. Histochem Cell Biol. 2008; 130(1): 71–77.
  55. Li J.Y., Boado R.J., Pardridge W.M. Blood-brain barrier genomics. J.Cereb. Blood Flow Metab. 2001; 21: 61–68.
  56. Oliveira R., Christov C., Guillamo J.S. et al. Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biology 2005; 6: 7.
  57. Baklaushev V.P., Gurina O.I., Yusubalieva G.M. et al. Immunofluorescent analysis of connexin-43 using monoclonal antibodies to its extracellular domain. Bull Exp. Biol. Med. 2009; 148(4): 725–730.
  58. Baklaushev V.P., Yusubalieva G.M., Tsitrin E.B. et al. Visualization of connexin 43-positive cells of glioma and the periglioma zone by means of intravenously injected monoclonal antibodies. Drug Deliv. 2011; 18(5): 331–337.
  59. Chekhonin V.P., Baklaushev V.P., Yusubalieva G.M. et al., Targeted delivery of liposomal nanocontainers to the peritumoral zone of glioma by means of monoclonal antibodies against GFAP and the extracellular loop of Cx43. Nanomedicine. 2012; 8(1): 63–70.

Views

Abstract - 25

PDF (Russian) - 28

Cited-By


PlumX



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies