THE APPLICATION OF NUCLEAR MEDICINE IMAGING IN NEUROLOGY, NEUROSURGERY AND PSYCHIATRY

Cover Page

Abstract


Analysis of use of nuclear medicine imaging (positron emission tomography and single photon emission computed tomography) in diagnosis, differential diagnosis and evaluation of treatment efficacy of central nervous system diseases is presented in this review. The possibility of radionuclide imaging techniques in different variants of dementia, Parkinson's disease, brain tumors is demonstrated on the basis of personal authors experience and recent literature data. Results of PET application in evaluating of the effecacy of stereotactic interventions in patients with anxiety obsessive disorders are also described in the review.

 


About the authors

A. M. Granov

The Russian Scientific Center of Radiology and Surgical Technologies of Ministry of Health and Social Development of Russian Federation, St. Petersburg

Author for correspondence.
Email: stanzhevsky@gmail.com

Russian Federation доктор медицинских наук, профессор, академик РАМН, директор РНЦРХТ Адрес: 197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д. 70 Тел.: (812) 598-84-62

L. A. Tyutin

The Russian Scientific Center of Radiology and Surgical Technologies of Ministry of Health and Social Development of Russian Federation, St. Petersburg

Email: stanzhevsky@gmail.com

Russian Federation Заслуженный деятель науки РФ, доктор медицинских наук, профессор, заместитель директора РНЦРХТ по научной работе, руководитель отдела лучевой диагностики Адрес: 197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д. 70 Тел.: (812) 598-84-62

A. A. Stanzhevskii

The Russian Scientific Center of Radiology and Surgical Technologies of Ministry of Health and Social Development of Russian Federation, St. Petersburg

Email: stanzhevsky@gmail.com

Russian Federation доктор медицинских наук, руководитель научно-организационного отдела РНЦРХТ, врач-радиолог отделения позитронной эмиссионной томографии Адрес: 197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, д. 70 Тел.: (911)921-68-37

References

  1. Granov A.M., Tyutin L.A., Kostenikov N.A., Shtukovskii O.A., Mostova M.I., Ryzhkova D.V., Tlostanova M.S., Stanzhevskii A.A., Balabanova A.A., Panfilenko A.A. Twelve-year experience in the use of PET in clinical practice (achievements and prospects). Vestnik rentgenologii i radiologii = Bulletin of ultrasound and radiology. 2008; 1: 10–18.
  2. Stanzhevskii A.A., Tyutin L.A., Kostenikov N.A., Pozdnyakov A.V. The possibility of positron emission tomography with 18F-fluorodeoxyglucose in the differential diagnosis of vascular dementia. Arterial'naya gipertenziya = Hypertension. 2009; 2 (15): 233–237.
  3. Fago J.P.. Dementia: causes, evaluation, and management. Hosp. Pract. (Off Ed). 2001; 36: 59–69.
  4. Medvedev, S.V. PET v Rossii. Pozitronnaya emissionnaya tomografiya v klinike i fiziologii [PET in Russia. Positron emission tomography in the clinic and physiology]. St. Petersburg, 2008. 318 p.
  5. Stanzhevskii, A.A. Stanzhevsky, AA The use of PET with 18F-FDG in the differential diagnosis of dementia. Meditsinskaya vizualizatsiya = Medical imaging. 2008; 4: 70–75.
  6. Silverman D.H., Lu C.S., Czernin J. et al. Prognostic value of brain PET in patients with early dementia symptoms, treated or untreated with anticholinesterase therapy. Nuc Med. 2000; 41: 64–72.
  7. Herholz K. PET studies in dementia. Ann. Nucl. Med. 2003; 17(2): 79–89.
  8. Mielke R., Schroder R., Fink G.R. et al. Regional cerebral glucose metabolism and postmortem pathology in Alzheimer's disease. Acta Neuropathol. 1996; 91: 174–179.
  9. Imamura T., Ishii K., Sasaki M. et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer's disease: a comparative study using positron emission tomography. Neurosti Lett. 1997; 235: 49–52.
  10. Mielke R., Heiss W.D. Positron emisssion tomography for diagnosis of Alzheimer's disease and vascular dementia. J. Neural. Transm. 1998; 53: 237–250.
  11. Koivunen J., Verkkoniemi A., Aalto S. et al. PET amyloid ligand [11C]PIB uptake shows predominantly striatal increase in variant Alzheimer's disease. Brain. 2008; 131(7): 1845–1853.
  12. Vandenberghe R. Van Laere K. Ivanoiu A. et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann. Neurol. 2010; 68(3): 319–29.
  13. Levin O.S., Fedorova N.V., Shtok V.N. The differential diagnosis of parkinsonism. Zhurn. nevrologii i psikhiatrii = Journal of neurology and psychiatry. 2003; 2 (103); 54–60.
  14. Dagher A., Owen A.M., Boecker H. et al. The role of the striatum and hippocampus in planning: А PET activation study in Parkinson's disease. Brain. 2001; 124.(5): 1020–1032.
  15. Brooks D.J. The early diagnosis of Parkinson's disease. Ann. Neurol. 1998; 44: 10–18.
  16. Pirker W., Asenbaum S., Hauk M. et al. Imaging serotonin and dopamine transporters with 123I-beta-CIT SPECT: binding kinetics and effects of normal aging. J. Nucl. Med. 2000; 41(1): 36–44.
  17. Seibyl J.P., Marek K., Sheff K., Zoghbi S., Baldwin R.M., Charney D.S., van Dyck C.H., Innis R.B. Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporters in healthy subjects and Parkinson's patients. J. Nucl. Med. 1998; 39(9): 1500–1508.
  18. Skvortsova T.Yu., Brodskaya Z.L., Rudas M.S. et al. Comparative evaluation of radiopharmaceuticals in PET diagnosis of brain tumors. Meditsinskaya vizualizatsiya = Medical imaging. 2001; 1: 67–74.
  19. Leeds N.E., Jackson E.F. Current imaging techniques for the evaluation of brain neoplasms. Curr. Opin. Oncol. 1994; Vol. 6: 254–261.
  20. Garcia E.V., Faber T.L., Galt J.R. et al. Advances in nuclear emission PET and SPECT imaging. IEEE Eng. Med. Biol. Mag. 2000; 19: 21–33.
  21. Pozitronnaya emissionnaya tomografiya: rukovodstvo dlya vrachei. Pod red. A.M. Granova i L.A. Tyutina [Positron emission tomography: a guide for physicians. Ed. A.M. Granov and L.A. Tyutin]. St. Petersburg, 2008. 610 p.
  22. Kostenikov N.A., Fadeev N.P., Tyutin L.A. et al. Comparative evaluation of the diagnostic capabilities of PET with 18F-FDG and 11C-sodium butyrate when examining patients with space-occupying lesions of the brain and ischemic (semiquantitative evaluation of the results of the data). Vestnik rentgenologii i radiologii = Bulletin of ultrasound and radiology. 2002; 4: 4–8.
  23. Delbeke D., Meyerowitz C., Lapidus R.L. et al. Optimal cutoff levels of F-18-fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology. 1995; 195: 47–52.
  24. Mankoff D.A., Bellon J.R. Positron-emission tomographic imaging of cancer: glucose metabolism and beyond. Semin. Radiat. Oncol. 2001; 11: 16–27.
  25. Moulin-Romsee G., D'Hondt E., Groot T., de, Goffin J. et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur. J. Nucl. Med. Mol. Imaging. 2007; 12: 2082–2087.
  26. Skvortsova T.Yu., Brodskaya Z.L., Savintseva Zh.I. Modern neuroimaging techniques in the differential diagnosis of radiation injuries of the brain in patients with cerebral tumors. Byulleten' Sibirskoi meditsiny = Bulletin of the Siberian medicine. 2011; 14: 130–136.
  27. Bergstrom M. Positron emission tomography in tumor diagnosis and treatment follow-up. Acta Oncol. 1993; 32: 183–188.
  28. Skvortsova T.Yu., Rudas M.S., Brodskaya Z.L. et al. The new criteria in positron emission tomography diagnosis of brain gliomas using 11C-methionine. Vopr. neirokhir. = Issues of neurosurgery. 2001; 2: 12–16.
  29. Benard F., Romsa J., Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin. Nucl. Med. 2003; 33: 148–162.
  30. Ribom D., Eriksson A., Hartman M. et al. Positron Emission Tomography 11C-Methionine and Survival in Patients with Low-Grade Gliomas. Cancer. 2001; 92: 1541–1549.
  31. Goldman S., Levivier M., Pirotte B. et al. Regional Methionine and Glucose Uptake in Highe-Grade Gliomas: A comparative study on PET-Guided Stereotactic Biopsy. J. Nucl. Med. 1997; 38: 1459–1462.
  32. Skvortsova T.Yu., Brodskaya Z.L., Gurchin A.F., Savintseva Zh.I. The diagnostic accuracy of PET with [11S] methionine in the delineation of the continued growth of primary cerebral tumors and radiation injury of the brain. Meditsinskaya vizualizatsiya = Medical imaging. 2011; 6: 80–86.
  33. Jager P.L., Vaalburg W., Pruim J. et al. Radiolabeled Amino Acids: Basic Aspects and Clinical applications in oncology. J. Nucl. Med. 2001; 42: 432–445.
  34. Langen G. et al. O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical application. Nucl. Med. Biol. 2006; 33: 287–294.
  35. Perani D., Colombo C., Bressi S. [18 F] FDG PET Study in Obsessive-Compulsive Disorder: A Clinical/Metabolic Correlation Study After Treatment. Br. J. Psychiatry. 1995; 166: 244–250.
  36. Saxena S., S.L .Rauch Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatric Clinics of North America. 2000; 23: 563–586.
  37. Korzenev A.V., Stanzhevskii A.A., Tyutin L.A. et al. The use of functional neuroimaging in the diagnosis and monitoring of treatment of anxiety and obsessive-compulsive disorder. Med. radiol. i rad. bezopasnost' – Medical Radiology and Radiation Safety. 2008; 3 (53): 48–56.
  38. Korzenev A.V., Tyutin L.A., Kostenikov N.A. et al. Positron emission tomography in patients with hereditary form obsesivno-compulsive disorder (clinical observation). Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2003; 8: 73–74.

Statistics

Views

Abstract - 279

PDF (Russian) - 516

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies