Cover Page


The formation of microbial biomembranes complicates clinical course of infectious diseases. The review deals with the problem of interaction between immune system and specific components of microbial biofilms. The immune mechanisms which may destroy biomembranes and damage biomembrane-associated microorganisms are analyzed. The vulnerable spots of immune defense against microbal biomembranes are described. This review also issues future prospects of immune-based control of microbal biomembrane processes.


About the authors

I. V. Chebotar'

Nizhny Novgorod State Medical Academy

Author for correspondence.

Russian Federation Candidate of Medical Sciences, Associate Professor, Chair of Microbiology and Immunology, State Education Institute Nizhniy Novgorod State Medical Academy, Ministry of Health, Russian Federation Address: 603005, Nizhniy Novgorod, Minin and Pozharskiy square, 10/1; Tel.: (831) 439-09-43


  1. Mayanskii A.N., Chebotar' I.V. Staphylococcal biofilms: structure, regulation, rejection. Zhurn. mikrobiol. = Journal of microbiology. 2011; 1: 101–108.
  2. Lewis C. Persistent cell survival and the mystery of biofilms. Biokhimiya = Biochemistry. 2005; 70 (2): 327–336.
  3. Bekhalo V.A., Bondarenko V.M., Sysolyatina E.V., Nagurskaya E.V. Nagurskaya Immunobiological characteristics of bacterial cells medical biofilms. Zhurn. mikrobiol. = Journal of microbiology. 2010; 4: 97–105.
  4. Chebotar' I.V., Mayanskii A.N., Konchakova E.D. et al. Antibiotic resistance biofilm bacteria. Klin. mikrobiol. i antimikrobn. khimioter. = Clinical microbiology and antimicrobial chemotherapy. 2012; 14 (1): 51–58.
  5. Costerton J. W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284: 1318–1322.
  6. Dongari-Bagtzoglou A. Pathogenesis of mucosal biofilm infections: challenges and progress. Exp. Rev. Anti. Infect. Ther. 2008; 6 (2): 201–208.
  7. Pinegin B.V., Mayanskii A.N. Neutrophils: structure and function. Immunologiya = Immunobiology. 2007; 6: 374–382.
  8. Verschoor C.P., Puchta A., Bowdish D.M. The macrophage. Meth. Mol. Biol. 2012; 844: 139–156.
  9. Leid J.G., Shirtliff M.E., Costerton J.W., Stoodley P. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun. 2002; 70: 6339–6345.
  10. Günther F., Wabnitz G.H., Stroh P. et al. Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol. Immunol. 2009; 46 (8–9): 1805–1813.
  11. Chebotar' I.V., Konchakova E.D., Evteeva N.I. Neutrophil-dependent destruction of biofilms formed by Staphylococcus aureus. Zhurn. mikrobiol. = Journal of microbiology. 2012; 1: 10–15.
  12. Stroh P., Günther F., Meyle E. et al. Host defence against Staphylococcus aureus biofilms by polymorphonuclear neutrophils: oxygen radical production but not phagocytosis depends on opsonisation with immunoglobulin G. Immunobiology. 2011; 216 (3): 351–357.
  13. Glynn A.A, O'Donnell S.T, Molony D.C. et al. Hydrogen peroxide induced repression of icaADBC transcription and biofilm development in Staphylococcus epidermidis. J. Orthop. Res. 2009; 27 (5): 627–630.
  14. Meyle E., Stroh P., Günther F. et al. Destruction of bacterial biofilms by polymorphonuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. Int. J. Artif. Organs. 2010; 33 (9): 608–620.
  15. Dolgushin I.I., Andreeva Yu.S., Savochkina A.Yu. Neitrofil'nye vnekletochnye lovushki i metody otsenki funktsional'nogo statusa neitrofilov [Neutrophil Extracellular Traps and Methods for Assessing the Functional Status of Neutrophils]. Moscow, Izd-vo RAMN, 2009. 208 p.
  16. Bernthal N.M, Pribaz J.R., Stavrakis A.I. et al. Protective role of IL-1β against post-arthroplasty Staphylococcus aureus infection. J. Orthop. Res. 2011; 29 (10): 1621–1626.
  17. Thurlow L.R, Hanke M.L., Fritz T. et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 2011; 186 (11): 6585–6596.
  18. Jesaitis A.J, Franklin M.J, Berglund D. et al. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J. Immunol. 2003; 171 (8): 4329–4339.
  19. Jensen E.T., Kharazmi A., Lam K., Costerton J.W., Høiby N. Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect. Immun. 1990; 58 (7): 2383–2385.
  20. Walker T.S., Tomlin K.L., Worthen G.S. et al. Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect. Immun. 2005; 73 (6): 3693–3701.
  21. Fuxman Bass J.I., Russo D.M., Gabelloni M.L. et al. Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. J. Immunol. 2010; 184 (11): 6386–6395.
  22. Zimmermann S., Wagner C., Müller W. et al. Induction of neutrophil chemotaxis by the quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect. Immun. 2006; 74 (10): 5687–5692.
  23. Wagner C., Zimmermann S., Brenner-Weiss G. et al. The quorum-sensing molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) enhances the host defence by activating human polymorphonuclear neutrophils (PMN). Anal. Bioanal. Chem. 2007; 387 (2): 481–487.
  24. Singh P.K., Parsek M.R., Greenberg E.P., Welsh M.J. A component of innate immunity prevents bacterial biofilm development. Nature. 2002; 417: 552–555.
  25. Overhage J., Campisano A., Bains M. et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 2008; 76 (9): 4176–4182.
  26. Leid J.G., Willson C.J., Shirtliff M.E. et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J. Immunol. 2005; 175 (11): 7512–7518.
  27. Mittal R., Sharma S., Chhibber S., Harjai K. Evaluation of tumour necrosis factor-alpha and interleukin-1beta in an experimental pyelonephritis model induced with planktonic and biofilms cells of Pseudomonas aeruginosa. Can. J. Infect. Dis. Med. Microbiol. 2009; 20 (3):35–42.
  28. Kropec A., Maira-Litran T., Jefferson K.K. et al. Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect. Immun. 2005; 73 (10): 6868–6876.
  29. Cerca N., Jefferson K.K., Oliveira R. et al. Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect. Immun. 2006; 74 (8): 4849–4855.
  30. Fredheim E.G., Granslo H.N., Flægstad T. et al. Staphylococcus epidermidis polysaccharide intercellular adhesin activates complement. FEMS Immunol. Med. Microbiol. 2011; 63 (2): 269–280.
  31. Steinberg D., Poran S., Shapira L. The effect of extracellular polysaccharides from Streptococcus mutans on the bactericidal activity of human neutrophils. Arch. Oral. Biol. 1999; 44 (5): 437–444.
  32. Kharazmi A. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol. Lett. 1991; 30 (2): 201–205.
  33. Katragkou A., Kruhlak M.J., Simitsopoulou M. et al. Interactions between human phagocytes and Candida albicans biofilms alone and in combination with antifungal agents. J. Infect. Dis. 2010; 201 (12): 1941–1949.
  34. Vuong C., Voyich J.M., Fischer E.R. et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol. 2004; 6 (3): 269–275.
  35. Schommer N.N., Christner M., Hentschke M. et al. Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect. Immun. 2011; 79 (6): 2267–2276.
  36. Steinberg D., Poran S., Shapira L. The effect of extracellular polysaccharides from Streptococcus mutans on the bactericidal activity of human neutrophils. Arch. Oral. Biol. 1999; 44 (5): 437–444.
  37. Hansch G.M., Brenner-Weiss G., Prior B. et al. The extracellular polymer substance of Pseudomonas aeruginosa: too slippery for neutrophils to migrate on? Int. J. Artif. Organs. 2008; 31 (9): 796–803.
  38. Venketaraman V., Lin A.K., Le A. et al. Both leukotoxin and poly-N-acetylglucosamine surface polysaccharide protect Aggregatibacter actinomycetemcomitans cells from macrophage killing. Microb. Pathog. 2008; 45 (3): 173–180.
  39. Mayanskii A.N., Chebotar' I.V., Rudneva E.I., Chistyakova V.P. Pseudomonas aeruginosa: characterization of biofilm process. Mol. gen., mikrobiol. i virusol. = Molecular genetics, microbiology and virology. 2012; 1: 3–8.
  40. Parks Q.M., Young R.L., Poch K.R. et al. Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J. Med. Microbiol. 2009; 58 (4): 492–502.
  41. Robertson D.M., Parks Q.M., Young R.L. et al. Disruption of contact lens-associated Pseudomonas aeruginosa biofilms formed in the presence of neutrophils. Invest. Ophthalmol. Vis. Sci. 2011; 52 (5): 2844–2850.
  42. Mathee K., Ciofu O., Sternberg C. et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology. 1999; 145 (6): 1349–1357.
  43. Mittal R., Sharma S., Chhibber S., Harjai K. Effect of macrophage secretory products on elaboration of virulence factors by planktonic and biofilm cells of Pseudomonas aeruginosa. Comp. Immunol. Microbiol. Infect. Dis. 2006; 29 (1): 12–26.
  44. Mittal R., Aggarwal S., Sharma S. et al. Contribution of macrophage secretory products to urovirulence of Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 2009; 57 (2): 156–164.
  45. Jensen E.T., Kharazmi A., Garred P. et al. Complement activation by Pseudomonas aeruginosa biofilms. Microb. Pathog. 1993; 15 (5): 377–388.
  46. Shannon O., Mörgelin M., Rasmussen M. Platelet activation and biofilm formation by Aerococcus urinae, an endocarditis-causing pathogen. Infect. Immun. 2010; 78 (10): 4268–4275.
  47. Elgalai I., Foster H.A. Comparison of adhesion of wound isolates of Staphylococcus aureus to immobilized proteins. J. Appl. Microbiol. 2003; 94 (3): 413–442.
  48. Thakur A., Chauhan A., Willcox M.D. Effect of lysozyme on adhesion and toxin release by Staphylococcus aureus. Aust. N. Z. J. Ophthalmol. 1999; 27 (3–4): 224–227.
  49. Millar M.R., Inglis T. Influence of lysozyme on aggregation of Staphylococcus aureus. J. Clin. Microbiol. 1987; 25 (9): 1587–1590.
  50. Mercier C., Durrieu C., Briandet R. et al. Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol. Microbiol. 2002; 46 (1): 235–243.
  51. Liang X., Chen Y.Y., Ruiz T., Wu H. New cell surface protein involved in biofilm formation by Streptococcus parasanguinis. Infect. Immun. 2011; 79 (8): 3239–3248.
  52. Yuan S., Wan D., Liang B. et al. Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir. 2011; 27 (6): 2761–2774.
  53. Wood A.J., Fraser J., Swi S., Amirapu S., Douglas R.G. Are biofilms associated with an inflammatory response in chronic rhinosinusitis? Int. Forum Allergy Rhinol. 2011; 1: 335–339.
  54. Kotsougiani D., Pioch M., Prior B. et al. Activation of T lymphocytes in response to persistent bacterial infection: induction of CD11b and of Toll-Like receptors on T cells. Int. J. Inflamm. 2010; 10: 526740.
  55. Prabhakara R., Harro J.M., Leid J.G. et al. Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect. Immun. 2011; 79 (4): 1789–1796.
  56. Meluleni G.J., Grout M., Evans D.J., Pier G.B. Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J. Immunol. 1995; 155 (4): 2029–2203.
  57. Mack D., Fischer W., Krokotsch A. et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 1996; 178 (1): 175–183.
  58. McKenney D., Hübner J., Muller E. et al. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect. Immun. 1998; 66 (10): 4711–4720.
  59. Cucarella C., Tormo M.A., Ubeda C. et al. Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect. Immun. 2004; 72 (4): 2177–2185.
  60. Sadovskaya I., Faure S., Watier D. et al. Potential use of poly-N-acetyl-beta-(1,6)-glucosamine as an antigen for diagnosis of staphylococcal orthopedic-prosthesis-related infections. Clin. Vacc. Immunol. 2007; 14 (12): 1609–1615.
  61. Sun D., Accavitti M.A., Bryers J.D. Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin. Diagn. Lab. Immunol. 2005; 12 (1): 93–100.
  62. Visai L., Xu Y., Casolini F. et al. Monoclonal antibodies to CNA, a collagen-binding microbial surface component recognizing adhesive matrix molecules, detach Staphylococcus aureus from a collagen substrate. J. Biol. Chem. 2000; 275 (51): 39837–43985.
  63. Arciola C.R., Balaban N., Baldassarri L. et al. Combating implant infections. Remarks by a women's team. Int. J. Artif. Organs. 2008; 31 (9): 858–864.
  64. de Oliveira-Garcia D., Dall'Agnol M., Rosales M. et al. Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol. 2003; 5 (9): 625–636.
  65. Shahrooei M., Hira V., Khodaparast L. et al. Vaccination with SesC decreases Staphylococcus epidermidis biofilm formation. Infect. Immun. 2012; 80 (10): 3660–3668.



Abstract - 185

PDF (Russian) - 527




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies