The History of the Global Spread of the Causative Agent of Anthrax Based on the Whole Genome Phylogenetic Analysis of Bacillus anthracis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review presents current data on the history of distribution, phylogeography, population structure, features of the evolution of the causative agent of anthrax. The results of foreign publications and our own original materials on the territorial distribution of genetic lines of Bacillus anthracis, the genetic relationship of variants isolated in Russia and abroad, the ways of distribution of variants of the pathogen in Russia and neighboring countries summarized. Based on the limited possibilities of spreading anthrax infection with sick animals and the high stability of pathogen spores in the environment, the leading role of human activity in the spread of B. anthracis shown. The probable ways of spread of the pathogen over long distances described, determined by the historical migration of people, the routes of conquerors, trade routes and the import of livestock products. The spread of the causative agent of anthrax on the territory of the Russian Federation began with Eastern Siberia and through the south of Siberia reached the European part of the Russian Federation, including the North Caucasus.

Full Text

Restricted Access

About the authors

Gennadii G. Onishchenko

The Russian Academy of Education; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: onishchenko@raop.ru
ORCID iD: 0000-0003-0135-7258
SPIN-code: 8535-6930

MD, PhD, Professor, Academician of the RAS

Russian Federation, Moscow; Moscow

Alexandr N. Kulichenko

Stavropol Plague Control Research Institute

Email: kulichenko_an@list.ru
ORCID iD: 0000-0002-9362-3949
SPIN-code: 5030-2635

MD, PhD, Professor, Academician of the RAS

Russian Federation, 13–15, Sovetskaya str., 355035, Stavropol

Evgenii I. Eremenko

Stavropol Plague Control Research Institute

Author for correspondence.
Email: ejer@mail.ru
ORCID iD: 0000-0002-1117-1185
SPIN-code: 3966-6884

MD, PhD, Professor

Russian Federation, 13–15, Sovetskaya str., 355035, Stavropol

Sergey V. Pisarenko

Stavropol Plague Control Research Institute

Email: pisarenko_sv@mail.ru
ORCID iD: 0000-0001-6458-6790
SPIN-code: 7749-6935

PhD in Chemical Sciences

Russian Federation, 13–15, Sovetskaya str., 355035, Stavropol

References

  1. Carlson CJ, Getz WM, Kausrud KL, et al. Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biol Rev Camb Philos Soc. 2018;93(4):1813–1831. doi: https://doi.org/10.1111/brv.12420
  2. Pilo P, Frey J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. Infec Genet Evol. 2018;64:115–125. doi: https://doi.org/10.1016/j.meegid.2018.06.024
  3. Сибирская язва: актуальные проблемы разработки и внедрения медицинских средств защиты / под ред. Г.Г. Онищенко, В.В. Кожухова. — М.: Медицина, 2010. — 424 с. [Sibirskaya yazva: aktual’nye problemy razrabotki i vnedreniya medicinskih sredstv zashchity / pod red. GG Onishchenko, VV Kozhuhova. Moscow: Medicina; 2010. 424 s. (In Russ.)]
  4. Сибирская язва: актуальные проблемы разработки и внедрения медицинских средств защиты / под ред. Г.Г. Онищенко, И.В. Дармова, С.В. Борисевича. — 2-е изд., испр. и доп. — СПб., 2018. — 592 с. [Sibirskaya yazva: aktual’nye problemy razrabotki i vnedreniya medicinskih sredstv zashchity / pod red. GG Onishchenko, IV Darmova, SV Borisevicha. 2-e izd., ispr. i dop. Sankt-Peterburg; 2018. 592 s. (In Russ.)]
  5. Van Ert MN, Easterday WR, Huynh L, et al. Global Genetic Population Structure of Bacillus anthracis. PLoS One. 2007;2(5):e461. doi: https://doi.org/10.1371/journal.pone.0000461
  6. Sahl JW, Pearson T, Okinaka R, et al. A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens. mBio. 2016;7(5):e01501-16. doi: https://doi.org/10.1128/mBio.01501-16
  7. Hang’Ombe MB, Mwansa JC, Muwowo S, et al. Human animal anthrax outbreak in the Luangwa valley of Zambia in 2011. Trop Doct. 2012;42(3):136–139. doi: https://doi.org/ 10.1258/td.2012.110454
  8. Ohnishi N, Maruyama F, Ogawa H, et al. Genome sequence of a Bacillus anthracis outbreak strain from Zambia, 2011. Genome Announc. 2014;6;2(2):e00116-14. doi: https://doi.org/10.1128/genomeA.00116-14
  9. Derzelle S, Aguilar-Bultet L, Frey J. Comparative genomics of Bacillus anthracis from the wool industry highlights polymorphisms of lineage A.Br.Vollum. Infect Genet Evol. 2016;46:50–58. doi: https://doi.org/10.1016/j.meegid.2016.10.019
  10. Price EP, Seymour ML, Sarovich DS, et al. Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. Emerg Infec Dis. 2012;18(8):1307–1313. doi: https://doi.org/10.3201/eid1808.111343
  11. Aikembayev AM, Lukhnova L, Temiraliyeva G, et al. Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan. Emerg Infect Dis. 2010;16(5):789–796. doi: https://doi.org/10.3201/eid1605.091427
  12. Derzelle S, Girault G, Roest HI, et al. Molecular diversity of Bacillus anthracis in the Netherlands: investigating the relationship to the worldwide population using whole-genome SNP discovery. Infect Genet Evol. 2015;32:370–376. doi: https://doi.org/10.1016/j.meegid.2015.03.030
  13. Khmaladze E, Birdsell DN, Naumann AA, et al. Phylogeography of Bacillus anthracis in the country of Georgia shows evidence of population structuring and is dissimilar to other regional genotypes. PLoS One. 2014;9(7):e102651. doi: https://doi.org/10.1371/journal.pone.0102651
  14. Pilo P, Perreten V, Frey J. Molecular epidemiology of Bacillus anthracis: determining the correct origin. Appl Environ Microbiol. 2008;74(9):2928–2931. doi: https://doi.org/10.1128/AEM.02574-07
  15. Wattiau P, Klee SR, Fretin D, et al. Occurrence and genetic diversity of Bacillus anthracis strains isolated in an active wool-cleaning factory. App Environ Microbiol. 2008;74(13):4005–4011. doi: https://doi.org/10.1128/AEM.00417-08
  16. Simonson TS, Okinaka RT, Wang B, et al. Bacillus anthracis in China and its relationship to worldwide lineages. BMC Microbiol. 2009;9:71. doi: https://doi.org/10.1186/1471-2180-9-71
  17. Jung KH, Kim SH, Kim SK, et al. Genetic populations of Bacillus anthracis isolates from Korea. J Vet Sci. 2012;13(4):385–393 doi: https://doi.org/10.4142/jvs.2012.13.4.385
  18. Girault G, Blouin Y, Vergnaud G, et al. High-throughput sequencing of Bacillus anthracis in France: investigating genome diversity and population structure using whole-genome SNP discovery. BMC Genomics. 2014;15:288. doi: https://doi.org/10.1186/1471-2164-15-288
  19. Kenefic LJ, Pearson T, Okinaka RT, et al. Pre-Columbian origins for North American anthrax PLoS One. 2009;4(3):e4813. doi: https://doi.org/10.1371/journal.pone.0004813
  20. Vergnaud G, Girault G, Thierry S, et al. Comparison of French and worldwide Bacillus anthracis strains favors a recent, post-Columbian origin of the predominant north-American clade. PLoS One. 2016;11(2):e0146216. doi: https://doi.org/10.1371/journal.pone.0146216
  21. Van Ness GB. Ecology of anthrax. Science. 1971;172(3990):1303–1307. doi: https://doi.org/10.1126/science.172.3990.1303
  22. Hanson RP. The earliest account of anthrax in man and animals in North America. J Am Vet Med Assoc. 1959;1;135:463–465.
  23. Legge TM. The Milroy Lectures on industrial anthrax: Delivered before the Royal College of Physicians of London. Br Med J. 1905;1(2306):529–531. doi: https://doi.org/10.1136/bmj.1.2306.529
  24. Doig AT, Gemmill JS. Epidemiology of a small outbreak of anthrax. Lancet. 1951;1(6662):1011–1012. doi: https://doi.org/10.1016/s0140-6736(51)92521-4
  25. Jamieson WM, Green DM. Anthrax and bone-meal fertilizer. Lancet. 1955;268(6863):560. doi: https://doi.org/10.1016/s0140-6736(55)91238-1
  26. Green DM, Jamieson WM. Anthrax and bone-meal fertilizer. Lancet. 1958;2(7038):153–154. doi: https://doi.org/10.1016/s0140-6736(58)92237-2
  27. Geering WA. Anthrax in Australia. UN-WHO Inter-regional Anthrax Workshop. Kathmandu, Nepal; 1997.
  28. Pisarenko SV, Eremenko EI, Ryazanova AG, et al. Phylogenetic analysis of Bacillus anthracis strains from Western Siberia reveals a new genetic cluster in the global population of the species. BMC Genomics. 2019;20(1):692. doi: https://doi.org/10.1186/s12864-019-6060-z
  29. Pisarenko SV, Eremenko EI, Kovalev DA, et al. Molecular genotyping of 15 B. anthracis strains isolated in Eastern Siberia and Far East. Mol Phylogenet Evol. 2021;159:107116. doi: https://doi.org/10.1016/j.ympev.2021.107116
  30. Eremenko E, Pechkovskii G, Pisarenko S, et al. Phylogenetics of Bacillus anthracis isolates from Russia and bordering countries. Infect Genet Evol. 2021;92:104890. doi: https://doi.org/10.1016/j.meegid.2021.104890
  31. Куличенко А.Н., Еременко Е.И., Рязанова А.Г., и др. Биологические свойства и молекулярно-генетическая характеристика штаммов Bacillus anthracis, выделенных во время вспышки сибирской язвы в Ямало-Ненецком автономном округе в 2016 г. // Проблемы особо опасных инфекций. — 2017. — № 1. — С. 94–99. [Kulichenko AN, Eremenko EI, Ryazanova AG, et al. Biological Properties and Molecular-Genetic Characteristics of Bacillus anthracis Strains, Isolated during the Outbreak of Anthrax in the Yamalo-Nenets Autonomous District in 2016. Problemy Osobo Opasnykh Infektsii = Problems of Particularly Dangerous Infections. 2017;1:94–99. (In Russ.)] doi: https://doi.org/10.21055/0370-1069-2017-1-94-99
  32. Timofeev V, Bahtejeva I, Mironova R, et al. Insights from Bacillus anthracis strains isolated from permafrost in the tundra zone of Russia. PLoS One. 2019;14(5):e0209140. doi: https://doi.org/10.1371/journal.pone.0209140
  33. Pearson T, Okinaka RT, Foster JT, et al. Phylogenetic understanding of clonal populations in an era of whole genome sequencing. Infect Genet Evol. 2009;9(5):1010–1019. doi: https://doi.org/10.1016/j.meegid.2009.05.014
  34. Keim P, Grunow R, Vipond R, et al. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years. EBioMedicine. 2015;2(11):1613–1618. doi: https://doi.org/10.1016/j.ebiom.2015.10.004
  35. Pullan ST, Pearson TR, Latham J, et al. Whole-genome sequencing investigation of animal-skin-drum-associated UK anthrax cases reveals evidence of mixed populations and relatedness to a US case. Microb Genom. 2015;1(5):e000039. doi: https://doi.org/10.1099/mgen.0.000039
  36. Szablewski CM, Hendricks K, Bower WA, et al. Anthrax Cases Associated with Animal-Hair Shaving Brushes. Emerg Infect Dis. 2017;23(5):806–808. doi: https://doi.org/10.3201/eid2305.161554
  37. Tatem AJ, Rogers DJ, Haу SI. Global transport networks and infectious disease spread. Adv Parasitol. 2006;62:293–343. doi: https://doi.org/10.1016/S0065-308X(05)62009-X
  38. Wyres K, Conway T, Garg S, et al. WGS analysis and interpretation in clinical and public health microbiology laboratories: What are the requirements and how do existing tools compare? Pathogens. 2014;3(2):437–458. doi: https://doi.org/10.3390/pathogens3020437

Supplementary files

Supplementary Files
Action
1. Fig. 1

Download (392KB)
2. Fig. 2

Download (319KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies