Immune Landscape Characteristics in Endometriosis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review is devoted to endometriosis-associated immune cells and immune molecules, analysis of various databases, new insights, theories, biomarkers, reviews of research in this area. To date, many attempts have been made to establish a certain role of immune cells and the microenvironment in the development of endometriosis. Nevertheless, despite intensive studies of endometriosis, the role of inflammatory cells and molecules has not yet been fully studied. As we know, the pathobiology of endometriosis is not fully understood, and its progression is associated with a local and systemic inflammatory reaction. It is important to clarify the role of the immune system to better understand its significance in the pathogenesis of endometriosis, especially in the case of atypical and endometriosis-associated ovarian tumors. The above requires further study of this problem in order to optimize the pathogenetically justified modern therapy of endometriosis.

Full Text

Restricted Access

About the authors

Olga I. Patsap

Peoples’ Friendship University of Russia

Email: Cleosnake@yandex.ru
ORCID iD: 0000-0003-4620-3922
SPIN-code: 6460-1758

МD, PhD

Russian Federation, Moscow

Marina B. Khabarova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: khabarovaMB@yandex.ru
ORCID iD: 0000-0003-3526-0366

МD, PhD

Russian Federation, Moscow

Anastasiia A. Buyanova

Pirogov Russian National Research Medical University

Email: anastasiiabuianova97@gmail.com
SPIN-code: 5725-7792
Scopus Author ID: 57218589485
ResearcherId: AGU-7781-2022

Laboratory Assistant

Russian Federation, Moscow

Sergey A. Mikhalev

Pirogov Russian National Research Medical University

Email: mikhalev@me.com
ORCID iD: 0000-0002-4822-0956
SPIN-code: 8105-7908

МD, PhD

Russian Federation, Moscow

Dmitriy A. Atyakshin

Peoples’ Friendship University of Russia

Email: atyakshin-da@rudn.ru
ORCID iD: 0000-0002-8347-4556
SPIN-code: 3830-8152

МD, PhD

Russian Federation, Moscow

Alexandra V. Babkina

City Clinical Oncological Hospital No. 1

Email: nikanorovaalex@gmail.com
ORCID iD: 0000-0001-5485-5803
SPIN-code: 3815-4541

MD

Russian Federation, Moscow

Liudmila M. Mikhaleva

B.V. Petrovsky Russian Scientific Center of Surgery

Author for correspondence.
Email: mikhalevalm@yandex.ru
ORCID iD: 0000-0003-2052-914X
SPIN-code: 2086-7513

МD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, Moscow

References

  1. Méar L, Herr M, Fauconnier A, et al. Polymorphisms and endometriosis: A systematic review and meta-analyses. Hum Reprod Update. 2020;26(1):73–102. doi: https://doi.org/10.1093/humupd/dmz034
  2. Agarwal SK, Chapron C, Giudice LC, et al. Clinical diagnosis of endometriosis: A call to action. Am J Obstet Gynecol. 2019;220(4):354.e1–354.e12. doi: https://doi.org/10.1016/j.ajog.2018.12.039
  3. Sampson JA. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:422–469. doi: https://doi.org/10.1016/s0002-9378(15)30003-x
  4. O DF, Roskams T, Van den Eynde K, et al. The Presence of Endometrial Cells in Peritoneal Fluid of Women with and without Endometriosis. Reprod Sci. 2017;24(2):242–251. doi: https://doi.org/10.1177/1933719116653677
  5. Jiang L, Zhang M, Wang S, et al. Common and specific gene signatures among three different endometriosis subtypes. Peer J. 2020;8:e8730. doi: https://doi.org/10.7717/peerj.8730
  6. Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk S, et al. Circulating miRNAs Related to Epithelial-Mesenchymal Transitions (EMT) as the New Molecular Markers in Endometriosis. Curr Issues Mol Biol. 2021;43(2):900–916. doi: https://doi.org/.3390/cimb43020064
  7. Eggers JC, Martino V, Reinbold R, et al. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online. 2016;32(4):434–445. doi: https://doi.org/10.1016/j.rbmo.2015.12.013
  8. Pluchino N, Taylor HS. Endometriosis and Stem Cell Trafficking. Reprod Sci. 2016;23(12):1616–1619. doi: https://doi.org/10.1177/1933719116671219
  9. Laganà AS, Salmeri FM, Vitale SG, et al. Stem Cell Trafficking During Endometriosis: May Epigenetics Play a Pivotal Role? Reprod Sci. 2018;25(7):978–979. doi: https://doi.org/10.1177/1933719116687661
  10. Mashayekhi P, Noruzinia M, Zeinali S, et al. Endometriotic Mesenchymal Stem Cells Epigenetic Pathogenesis: Deregulation of miR-200b, miR-145, and let7b in a Functional Imbalanced Epigenetic Disease. Cell J. 2019;21(2):179–185. doi: https://doi.org/10.22074/cellj.2019.5903
  11. Acloque H, Adams MS, Fishwick K, et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119(6):1438–1449. doi: https://doi.org/10.1172/JCI38019
  12. Mikhaleva LM, Radzinsky VE, Orazov MR, et al. Current Knowledge on Endometriosis Etiology: A Systematic Review of Literature. Int J Womens Health. 2021;13:525–537. doi: https://doi.org/10.2147/IJWH.S306135
  13. Scheerer C, Bauer P, Chiantera V, et al. Characterization of endometriosis-associated immune cell infiltrates (EMaICI). Arch Gynecol Obstet. 2016;294(3):657–664. doi: https://doi.org/10.1007/s00404-016-4142-6
  14. Porpora MG, Scaramuzzino S, Sangiuliano C, et al. High prevalence of autoimmune diseases in women with endometriosis: A case-control study. Gynecol Endocrinol. 2020;36(4):356–359. doi: https://doi.org/10.1080/09513590.2019.1655727
  15. Shigesi N, Kvaskoff M, Kirtley S, et al. The association between endometriosis and autoimmune diseases: A systematic review and meta-analysis. Hum Reprod Update. 2019;25(4):486–503. doi: https://doi.org/10.1093/humupd/dmz014
  16. Crispim PCA, Jammal MP, Murta EFC, et al. Endometriosis: What is the Influence of Immune Cells? Immunol Invest. 2021;50(4):372–388. doi: https://doi.org/10.1080/08820139.2020.1764577
  17. Itoh F, Komohara Y, Takaishi K, et al. Possible involvement of signal transducer and activator of transcription-3 in cell-cell interactions of peritoneal macrophages and endometrial stromal cells in human endometriosis. Fertil Steril. 2013;99(6):1705–1713. doi: https://doi.org/10.1016/j.fertnstert.2013.01.133
  18. Shao J, Zhang B, Yu J-J, et al. Macrophages promote the growth and invasion of endometrial stromal cells by downregulating IL-24 in endometriosis. Reproduction. 2016;152(6):673–682. doi: https://doi.org/10.1530/REP-16-0278
  19. Chan RWS, Lee C-L, Ng EHY, et al. Co-culture with macrophages enhances the clonogenic and invasion activity of endometriotic stromal cells. Cell Prolif. 2017;50(3):e12330. doi: 10.1111/cpr.12330
  20. Takebayashi A, Kimura F, Kishi Y, et al. Subpopulations of macrophages within eutopic endometrium of endometriosis patients. Am J Reprod Immunol. 2015;73(3):221–231. doi: https://doi.org/10.1111/aji.12331
  21. Wang Y, Fu Y, Xue S, et al. The M2 polarization of macrophage induced by fractalkine in the endometriotic milieu enhances invasiveness of endometrial stromal cells. Int J Clin Exp Pathol. 2013;7(1):194–203.
  22. Cominelli A, Gaide Chevronnay HP, Lemoine P, et al. Matrix metalloproteinase-27 is expressed in CD163+/CD206+ M2 macrophages in the cycling human endometrium and in superficial endometriotic lesions. Mol Hum Reprod. 2014;20(8):767–775. doi: https://doi.org/10.1093/molehr/gau034
  23. Nematian SE, Mamillapalli R, Kadakia TS, et al. Systemic Inflammation Induced by microRNAs: Endometriosis-Derived Alterations in Circulating microRNA 125b-5p and Let-7b-5p Regulate Macrophage Cytokine Production. J Clin Endocrinol Metab. 2018;103(1):64–74. doi: https://doi.org/10.1210/jc.2017-01199
  24. Zhang Z, Li H, Zhao Z, et al. miR-146b level and variants is associated with endometriosis related macrophages phenotype and plays a pivotal role in the endometriotic pain symptom. Taiwan J Obstet Gynecol. 2019;58(3):401–408. doi: https://doi.org/10.1016/j.tjog.2018.12.003
  25. Atiakshin D, Buchwalow I, Tiemann M. Mast cells and collagen fibrillogenesis. Histochem Cell Biol. 2020;154(1):21–40. doi: https://doi.org/10.1007/s00418-020-01875-9
  26. Atiakshin D, Buchwalow I, Samoilova V, et al. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol. 2018;149(5):461–477. doi: https://doi.org/10.1007/s00418-018-1659-8
  27. Atiakshin D, Buchwalow I, Tiemann M. Mast cell chymase: morphofunctional characteristics. Histochem Cell Biol. 2019;152(4):253–269. doi: https://doi.org/10.1007/s00418-019-01803-6
  28. Borelli V, Martinelli M, Luppi S, et al. Mast Cells in Peritoneal Fluid from Women with Endometriosis and Their Possible Role in Modulating Sperm Function. Front Physiol. 2020;10:1543. doi: https://doi.org/10.3389/fphys.2019.01543
  29. Pahl J, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology. 2017;222(1):11–20. doi: https://doi.org/10.1016/j.imbio.2015.07.012
  30. Thiruchelvam U, Wingfield M, O’Farrelly C. Natural Killer Cells: Key Players in Endometriosis. Am J Reprod Immunol. 2015;74(4):291–301. doi: https://doi.org/10.1111/aji.12408
  31. Jeung IC, Chung Y-J, Chae B, et al. Effect of helixor A on natural killer cell activity in endometriosis. Int J Med Sci. 2015;12(1):42–47. doi: https://doi.org/10.7150/ijms.10076
  32. Montenegro ML, Ferriani RA, Basse PH. Exogenous activated NK cells enhance trafficking of endogenous NK cells to endometriotic lesions. BMC Immunol. 2015;16:51. doi: https://doi.org/10.1186/s12865-015-0105-0
  33. Tscharke DC, Croft NP, Doherty PC, et al. Sizing up the key determinants of the CD8(+) T-cell response. Nat Rev Immunol. 2015;15(11):705–716. doi: https://doi.org/10.1038/nri3905
  34. Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol. 2016;28(4):163–171. doi: https://doi.org/10.1093/intimm/dxw006
  35. Mier-Cabrera J, Jiménez-Zamudio L, García-Latorre E, et al. Quantitative and qualitative peritoneal immune profiles, T-cell apoptosis and oxidative stress-associated characteristics in women with minimal and mild endometriosis. BJOG. 2011;118(1):6–16. doi: https://doi.org/10.1111/j.1471-0528.2010.02777.x
  36. Takamura M, Koga K, Izumi G, et al. Simultaneous Detection and Evaluation of Four Subsets of CD4+ T Lymphocyte in Lesions and Peripheral Blood in Endometriosis. Am J Reprod Immunol. 2015;74(6):480–486. doi: https://doi.org/10.1111/aji.12426
  37. Gogacz M, Winkler I, Bojarska-Junak A, et al. Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis. J Reprod Immunol. 2016;117:39–44. doi: https://doi.org/10.1016/j.jri.2016.04.289
  38. Wei C, Mei J, Tang L, et al. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis. 2016;7(12):e2489. doi: https://doi.org/10.1038/cddis.2016.375
  39. Tokmak A, Yildirim G, Öztaş E, et al. Use of Neutrophil-to-Lymphocyte Ratio Combined with CA-125 to Distinguish Endometriomas from Other Benign Ovarian Cysts. Reprod Sci. 2016;23(6):795–802. doi: https://doi.org/10.1177/1933719115620494
  40. Zhou J, Chern BSM, Barton-Smith P, et al. Peritoneal Fluid Cytokines Reveal New Insights of Endometriosis Subphenotypes. Int J Mol Sci. 2020;21(10):3515. doi: https://doi.org/10.3390/ijms21103515

Supplementary files

Supplementary Files
Action
1. Fig. 1

Download (281KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies