Preview

Вестник Российской академии медицинских наук

Расширенный поиск

МЕХАНИЗМЫ АДАПТАЦИИ СОСУДИСТОГО РУСЛА К ГЕМОДИНАМИЧЕСКИМ НАРУШЕНИЯМ ПРИ ПОРТАЛЬНОЙ ГИПЕРТЕНЗИИ

https://doi.org/10.15690/vramn.v68i1.538

Полный текст:

Аннотация

Представлены данные литературы о механизмах структурной перестройки сосудистого русла в ответ на гемодинамические нарушения, обусловленные портальной гипертензией. Несмотря на то, что эти изменения служат компенсаторно-приспособительной реакцией на ухудшающиеся условия кровообращения, они приводят к её прогрессированию, способствуя развитию тяжелых осложнений, одним из которых являются кровотечения из варикозно расширенных вен пищевода.

 

Об авторе

Д. В. Гарбузенко
Челябинская государственная медицинская академия, Российская Федерация
Россия


Список литературы

1. Garbuzenko D.V. Multiorgan hemodynamic abnormalities in liver cirrhosis. Ter. arkhiv = Therapeutic archive. 2007; 79 (2): 73–77.

2. Bosch J., Abraldes J.G., Fernandez M., Garcia-Pagan J.C. Hepatic endothelial dysfunction and abnormal angiogenesis: New targets in the treatment of portal hypertension. J. Hepatol. 2010; 53 (3): 558–567.

3. Iwakiri Y. Endothelial dysfunction in the regulation of cirrhosis and portal hypertension. Liver Int. 2012; 32 (2): 199–213.

4. Florya V.G. The role of left ventricular remodeling in the pathogenesis of chronic heart failure. Kardiologiya = Cardiology. 1997; 37 (5): 63–70.

5. Gibbons G.H., Dzau V.J. The emerging concept of vascular remodeling. N. Engl. J. Med. 1994; 330 (20): 1431–1438.

6. Davies P.F., Barbee K.A., Volin M.V., Robotewskyj A., Chen J., Joseph L., Griem M.L., Wernick M.N., Jacobs E., Polacek D.C., de Paola N., Barakat A.I. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu. Rev. Physiol. 1997; 59: 527–549.

7. Ngai C.Y., Yao X. Vascular responses to shear stress: the involvement of mechanosensors in endothelial cells. Open Circ. Vasc. J. 2010; 3: 85–94.

8. Mulvany M.J. Small artery remodelling in hypertension. Basic Clin. Pharmacol. Toxicol. 2012; 110 (1): 49–55.

9. Briones A.M., Gonzalez J.M., Somoza B., Giraldo J., Daly C.J., Vila E., González M.C., McGrath J.C., Arribas S.M. Role of elastin in spontaneously hypertensive rat small mesenteric artery remodeling. J. Physiol. 2003; 552 (1): 185–195.

10. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 2007; 6 (4): 273–286.

11. Skuli N., Majmundar A.J., Krock B.L., Mesquita R.C., Mathew L.K., Quinn Z.L., Runge A., Liu L., Kim M.N., Liang J., Schenkel S., Yodh A.G., Keith B., Simon M.C. Endothelial HIF-2a regulates murine pathological angiogenesis and revascularization processes. J. Clin. Invest. 2012; 122 (4): 1427–1443.

12. Bootle-Wilbraham C.A., Tazzyman S., Thompson W.D., Stirk C.M., Lewis C.E. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro. Angiogenesis. 2001; 4 (4): 269–275.

13. Klein S., Roghani M., Rifkin D.B. Fibroblast growth factors as angiogenesis factors: new insights into their mechanism of action. EXS. 1997; 79: 159–192.

14. Hellberg C., Ostman A., Heldin C.H. PDGF and vessel maturation. Recent Results Cancer Res. 2010; 180: 103–114.

15. Kim I., Moon S.O., Koh K.N., Kim H., Uhm C.S., Kwak H.J., Kim N.G., Koh G.Y. Molecular cloning, expression, and characterization of angiopoietin-related protein. angiopoietin-related protein induces endothelial cell sprouting. J. Biol. Chem. 1999; 274 (37): 26523–26528.

16. Reynolds L.E., Wyder L., Lively J.C., Taverna D., Robinson S.D., Huang X., Sheppard D., Hynes R.O., Hodivala-Dilke K.M. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat. Med. 2002; 8 (1): 27–34.

17. Kevil C.G., Payne D.K., Mire E., Alexander J.S. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J. Biol. Chem. 1998; 273 (24): 15099–15103.

18. Greenaway J., Lawler J., Moorehead R., Bornstein P., Lamarre J., Petrik J. Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1). J. Cell Physiol. 2007; 210 (3): 807–818.

19. Eriksson K., Magnusson P., Dixelius J., Claesson-Welsh L., Cross M.J. Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett. 2003; 536 (1–3): 19–24.

20. Abraldes J.G., Iwakiri Y., Loureiro-Silva M., Haq O., Sessa W.C., Groszmann R.J. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am. J. Physiol. Gastrointest. Liver Physiol. 2006; 290 (5): 980–987.

21. Angermayr B., Mejias M., Gracia-Sancho J., Garcia-Pagan J.C., Bosch J., Fernandez M. Heme oxygenase attenuates oxidative stress and inflammation, and increases VEGF expression in portal hypertensive rats. J. Hepatol. 2006; 44 (6): 1033–1039.

22. Kobus K., Kopycinska J., Kozlowska-Wiechowska A., Urasinska E., Kempinska-Podhorodecka A., Haas T.L., Milkiewicz P., Milkiewicz M. Аngiogenesis within the duodenum of patients with cirrhosis is modulated by mechanosensitive Kruppel-like factor 2 and microRNA-126. Liver Int. 2012; 32 (8): 1222–1232.

23. Huang H.C., Haq O., Utsumi T., Sethasine S., Abraldes J.G., Groszmann R.J., Iwakiri Y. Intestinal and plasma VEGF levels in cirrhosis: The role of portal pressure. J. Cell Mol. Med. 2012; 16 (5): 1125–1133.

24. Fernández M., Semela D., Bruix J., Colle I., Pinzani M., Bosch J. Angiogenesis in liver disease. J. Hepatol. 2009; 50 (3): 604–620.

25. Chan C.C., Tsai S.C., Cheng L.Y., Lee F.Y., Lin H.C. Hemodynamic assessment of the development of portal-systemic collaterals in portal hypertensive rats. Dig. Dis. Sci. 2011; 56 (2): 417–424.

26. Carmeliet P. Manipulating angiogenesis in medicine. J. Intern. Med. 2004; 255 (5): 538–561.

27. Fernandez M., Vizzutti F., Garcia-Pagan J.C., Rodes J., Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology. 2004; 126 (3): 886–894.

28. Fernandez M., Mejias M., Angermayr B., Garcia-Pagan J.C., Rodés J., Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J. Hepatol. 2005; 43 (1): 98–103.

29. Angermayr B., Fernandez M., Mejias M., Gracia-Sancho J., Garcia-Pagan J.C., Bosch J. NAD(P)H oxidase modulates angiogenesis and the development of portosystemic collaterals and splanchnic hyperaemia in portal hypertensive rats. Gut. 2007; 56 (4): 560–564.

30. Chan C.C. Portal-systemic collaterals and angiogenesis. J. Chin. Med. Assoc. 2009; 72 (5): 223–224.

31. Albillos A., Bañares R., González M., Catalina M.V., Pastor O., Gonzalez R., Ripoll C., Bosch J. The extent of the collateral circulation influences the postprandial increase in portal pressure in patients with cirrhosis. Gut. 2007; 56 (2): 259–264.

32. Chiang J.H., Lee R.C., Huang S.S., Chiou Y.Y., Tseng T.S., Wang J.H., Tiu C.M., Chou Y.H., Chang C.Y., Teng M.H. Hepatofugal collaterals in advanced liver cirrhosis: Identification with CT portography. Chin. J. Radiol. 2006; 31: 1–13.

33. Yang Z., Tian L., Peng L., Qiu F. Immunohistochemical analysis of growth factor expression and localization in gastric coronary vein of cirrhotic patients. J. Tongji. Med. Univ. 1996; 16 (4): 229–233.

34. Hashizume M., Kitano S., Sugimaschi K., Sueishi K. Three-dimensional view of the vascular structure of the lower esophagus in clinical portal hypertension. Hepatology. 1988; 8 (6): 1482–1487.

35. Turmakhanov S.T., Asadulaev Sh.M., Akhmetkaliev M.N. Morfostrukturnye izmeneniya neparnoi veny i ven gastroezofageal'noi zony pri portal'noi gipertenzii. Annaly khirurgicheskoi gepatologii. 2008; 13 (2): 58–65.

36. Vianna A., Hayes P.C., Moscoso G., Driver M., Portmann B., Westaby D., Williams R. Normal venous circulation of the gastroesophageal junction. Gastroenterology. 1987; 93 (4): 876–889.

37. Noda T. Angioarchitectural study of esophageal varices with special reference to variceal rupture. Virchows Arch. 1984; 404 (4): 381–392.

38. Kimura T., Moriyasu F., Kawasaki T., Someda H., Tamada T., Yamashita Y., Ono S., Kajimura K., Nishida O., Okuma M. Relationship between esophageal varices and azygos vein evaluated by cineportography. Hepatology. 1991; 13 (5): 858–864.

39. Gatta A., Bolognesi M., Merkel C. Vasoactive factors and hemodynamic mechanisms in the pathophysiology of portal hypertension in cirrhosis. Mol. Aspects. Med. 2008; 29 (1–2): 119–129.

40. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr. Rev. 2007; 65 (12 Pt.. 2): 140–146.

41. de Las Heras N., Aller M.A., Martín-Fernández B., Miana M., Ballesteros S., Regadera J., Cachofeiro V., Arias J., Lahera V. A wound-like inflammatory aortic response in chronic portal hypertensive rats. Mol. Immunol. 2012; 51 (2): 177–187.

42. Fernández-Varo G., Ros J., Morales-Ruiz M., Cejudo-Martín P., Arroyo V., Solé M., Rivera F., Rodés J., Jiménez W. Nitric oxide synthase 3-dependent vascular remodeling and circulatory dysfunction in cirrhosis. Am. J. Pathol. 2003; 162 (6): 1985–1993.

43. Piva A., Zampieri F., Di Pascoli M., Gatta A., Sacerdoti D., Bolognesi M. Mesenteric arteries responsiveness to acute variations of wall shear stress is impaired in rats with liver cirrhosis. Scand. J. Gastroenterol. 2012; 47 (8–9): 1003–1013.

44. Resch M., Wiest R., Moleda L., Fredersdorf S., Stoelcker B., Schroeder J.A., Schölmerich J., Endemann D.H. Alterations in mechanical properties of mesenteric resistance arteries in experimental portal hypertension. Am. J. Physiol. Gastrointest. Liver Physiol. 2009; 297 (4): 849–857.

45. Geerts A.M., De Vriese A.S., Vanheule E., Van Vlierberghe H., Mortier S., Cheung K.J., Demetter P., Lameire N., De Vos M., Colle I. Increased angiogenesis and permeability in the mesenteric microvasculature of rats with cirrhosis and portal hypertension: an in vivo study. Liver Int. 2006; 26 (7): 889–898.

46. He X.J., Huang T.Z., Wang P.J., Peng X.C., Li W.C., Wang J., Tang J., Feng N., Yu M.H. Morphological and biomechanical remodeling of the hepatic portal vein in a swine model of portal hypertension. Ann. Vasc. Surg. 2012; 26 (2): 259–267.

47. Vorobioff J., Bredfeldt J.E., Groszmann J. Hyperdynamic circulation in portal hypertensive rat model: a primary factor for maintenence of chronic portal hypertension. Am. J. Physiol. 1983; 244 (1): 52–57.

48. Eipel C., Abshagen K., Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J. Gastroenterol. 2010; 16 (48): 6046–6057.

49. He X.J., Yu M.H., Li W.C., Wang H.Q., Li J., Peng X.C., Tang J., Feng N., Huang T.Z. Morphological and biomechanical remodelling of the hepatic artery in a swine model of portal hypertension. Hepatol. Int. 2012; 6 (3): 631–638.

50. Li T., Ni J.Y., Qi Y.W., Li H.Y., Zhang T., Yang Z. Splenic vasculopathy in portal hypertension patients. World J. Gastroenterol. 2006; 12 (17): 2737–2741.

51. Yang Z., Zhang L., Li D., Qiu F. Pathological morphology alteration of the splanchnic vascular wall in portal hypertensive patients. Chin. Med. J. (Engl.). 2002; 115 (4): 559–562.


Для цитирования:


Гарбузенко Д.В. МЕХАНИЗМЫ АДАПТАЦИИ СОСУДИСТОГО РУСЛА К ГЕМОДИНАМИЧЕСКИМ НАРУШЕНИЯМ ПРИ ПОРТАЛЬНОЙ ГИПЕРТЕНЗИИ. Вестник Российской академии медицинских наук. 2013;68(1):52-57. https://doi.org/10.15690/vramn.v68i1.538

For citation:


Garbuzenko D.V. THE MECHANISMS OF ADAPTATION OF THE VASCULAR BED TO HEMODYNAMIC CHANGES IN PORTAL HYPERTENSION. Annals of the Russian academy of medical sciences. 2013;68(1):52-57. (In Russ.) https://doi.org/10.15690/vramn.v68i1.538

Просмотров: 177


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-6047 (Print)
ISSN 2414-3545 (Online)