Antiaging Klotho Protein as a Prospective Novel Tumor Suppressor

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

α-Isomer of Klotho Protein has been actively studied over the past 20 years. It has been found that α-Klotho is closely associated with aging and has anti-aging properties. Besides, it is involved in development of malignant tumor diseases. Its universal influence on many biological mechanisms leading to hyperplastic changes in cells and tissues has been proven experimentally. Recent studies demonstrated inhibitory effect of α-Klotho on the classical carcinogenic pathways such as insulin-like growth factor 1 (IGF1), fibroblast growth factor (FGFs), transforming growth factor β1 (TGFb1), Wnt, P53/p21, oxidative stress response pathways. Impeding effect of α-Klotho protein on the development of such types of malignant tumors as breast, pancreatic, lung, stomach, hepatocarcinoma, and others is proven in a number of cases. This review describes the role of α-Klotho in oncogenesis, its involvement and influence on the main signaling pathways known for their role in the development of malignant tumors, and the possibility of regulating its expression.

Full Text

Restricted Access

About the authors

Kristina I. Nesterova

University of Toronto

Email: kristinachka2013@gmail.com
ORCID iD: 0000-0001-6377-7552

MD, Medical Resident, Internal Medicine PGY-1

Canada, Toronto

Yelena Yu. Glinka

Keenan Research Centre, St. Michael’s Hospital

Email: pyat57@rogers.com
ORCID iD: 0000-0003-0187-2559

Researcher

Canada, Toronto

Valentina N. Perfilova

Volgograd State Medical University

Email: vnperfilova@mail.ru
ORCID iD: 0000-0002-2457-8486
SPIN-code: 3291-9904
ResearcherId: 625615

PhD in Biology, Professor

Russian Federation, Volgograd

Alla A. Nesterova

Volgograd State Medical University

Author for correspondence.
Email: aanesterova2013@gmail.com
ORCID iD: 0000-0001-7249-3906
SPIN-code: 5640-5539
ResearcherId: 643862

MD, PhD, Associate Professor

Russian Federation, Volgograd

Kamil D. Kaplanov

City Clinical Hospital Named after S.P. Botkin

Email: kamil.kaplanov75@gmail.com
ORCID iD: 0000-0001-6574-0518
SPIN-code: 5051-9022

MD, PhD

Russian Federation, Moscow

References

  1. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. doi: https://doi.org/10.1038/36285
  2. Нестерова А.А., Глинка Е.Ю., Тюренков И.Н., и др. Белок клото — универсальный регулятор физиологических процессов в организме // Успехи физиологических наук. — 2020. — Т. 51. — № 2. — С. 88–104. [Nesterova AA, Glinka EYu, Tyurenkov IN, et al. Universal Protein Klotho — Regulator of Physiological Processes in the Organism. Uspekhi fiziologicheskih nauk. 2020;51(2): 88–104. (In Russ.)] doi: https://doi.org/10.31857/S0301179820020083
  3. Xie B, Chen J, Liu B, et al. Klotho acts as a tumor suppressor in cancers. Pathol Oncol Res. 2013;19(4):611–617. doi: https://doi.org/10.1007/s12253-013-9663-8
  4. GLOBOCAN 2021: estimated cancer incidence, mortality and prevalence worldwide in 2020.
  5. White MC, Holman DM, Boehm JE, et al. Age and cancer risk: A potentially modifiable relationship. Am J Prev Med. 2014;46(3Suppl1):S7–15. doi: https://doi.org/10.1016/j.amepre.2013.10.029
  6. Berben L, Floris G, Wildiers H, et al. Cancer and Aging: Two Tightly Interconnected Biological Processes. Cancers (Basel). 2021;13(6):1400. doi: https://doi.org/10.3390/cancers13061400
  7. Siametis A, Niotis G, Garinis GA. DNA Damage and the Aging Epigenome. J Invest Dermatol. 2021;141(4S):961–967. doi: https://doi.org/10.1016/j.jid.2020.10.006
  8. Patel J, Baptiste BA, Kim E, et al. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–1634. doi: https://doi.org/10.1093/carcin/bgaa114
  9. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability — an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–228. doi: https://doi.org/10.1038/nrm2858
  10. Xu Y, Sun Z. Molecular basis of Klotho: From gene to function in aging. Endocr Rev. 2015;36(2):174–193. doi: https://doi.org/10.1210/er.2013-1079
  11. Wang Y, Sun Z. Current understanding of klotho. Ageing Res Rev. 2009;8(1):43–51. doi: https://doi.org/10.1016/j.arr.2008.10.002
  12. Tyurenkov IN, Perfilova VN, Nesterova AA, et al. Klotho Protein and Cardio-Vascular System. Biochemistry (Mosc). 2021;86(2):132–145. doi: https://doi.org/10.1134/S0006297921020024
  13. Tohyama O, Imura A, Iwano A, et al. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem. 2004;279(11):9777–9784. doi: https://doi.org/10.1074/jbc.M312392200
  14. Chen CD, Podvin S, Gillespie E, et al. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A. 2007;104(50):19796–19801. doi: https://doi.org/10.1073/pnas.0709805104
  15. Lim K, Groen A, Molostvov G, et al. α-Klotho Expression in Human Tissues. J Clin Endocrinol Metab. 2015;100(10):E1308–E1318. doi: https://doi.org/10.1210/jc.2015-1800
  16. Lim K, Halim A, Lu T-S, et al. Klotho: A Major Shareholder in Vascular Aging Enterprises. Int J Mol Sci. 2019;20(18):4637. doi: https://doi.org/10.3390/ijms20184637
  17. Bian A, Neyra JA, Zhan M, et al. Klotho, stem cells, and aging. Clin Interv Aging. 2015;10:1233–1243. doi: https://doi.org/10.2147/CIA.S84978
  18. Turan K, Ata P. Effects of intra- and extracellular factors on anti-aging klotho gene expression. Genet Mol Res. 2011;10(3):2009–2023. doi: https://doi.org/10.4238/vol10-3gmr1261
  19. Matsumura Y, Aizawa H, Shiraki-Iida T, et al. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998;242(3):626–630. doi: https://doi.org/10.1006/bbrc.1997.8019
  20. King GD, Rosene DL, Abraham CR. Promoter methylation and age-related downregulation of Klotho in rhesus monkey. Age (Dordr). 2012;34(6):1405–1419. doi: https://doi.org/10.1007/s11357-011-9315-4
  21. Azuma M, Koyama D, Kikuchi J, et al. Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J. 2012;26(10):4264–4274. doi: https://doi.org/10.1096/fj.12-211631
  22. Young G-H, Wu V-C. KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012;81(7):611–612. doi: https://doi.org/10.1038/ki.2011.461
  23. Wang L, Wang X, Wang X, et al. Klotho is silenced through promoter hypermethylation in gastric cancer. Am J Cancer Res. 2011;1(1):111–119.
  24. Xu T-H, Liu M, Zhou XE, et al. Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature. 2020; 586(7827):151–155. doi: https://doi.org/10.1038/s41586-020-2747-1
  25. Zhang Z-M, Lu R, Wang P, et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 2018;554(7692):387–391. doi: https://doi.org/10.1038/nature25477
  26. Pacaud R, Sery Q, Oliver L, et al. DNMT3L interacts with transcription factors to target DNMT3L/DNMT3B to specific DNA sequences: role of the DNMT3L/DNMT3B/p65-NFκB complex in the (de-)methylation of TRAF1. Biochimie. 2014;104:36–49. doi: https://doi.org/10.1016/j.biochi.2014.05.005
  27. Senyuk V, Premanand K, Xu P, et al. The oncoprotein EVI1 and the DNA methyltransferase Dnmt3 co-operate in binding and de novo methylation of target DNA. PLoS One. 2011;6(6):e20793. doi: https://doi.org/10.1371/journal.pone.0020793
  28. Tataranni T, Biondi G, Cariello M, et al. Rapamycin-induced hypophosphatemia and insulin resistance are associated with mTORC2 activation and Klotho expression. Am J Transplant. 2011;11(8):1656–1664. doi: https://doi.org/10.1111/j.1600-6143.2011.03590.x
  29. King GD, Chen C, Huang MM, et al. Identification of novel small molecules that elevate Klotho expression. Biochem J. 2012;441(1):453–461. doi: https://doi.org/10.1042/BJ20101909
  30. Mizuno I, Takahashi Y, Okimura Y, et al. Upregulation of the klotho gene expression by thyroid hormone and during adipose differentiation in 3T3-L1 adipocytes. Life Sci. 2001;68(26):2917–2923. doi: https://doi.org/10.1016/s0024-3205(01)01092-x
  31. Mehi SJ, Maltare A, Abraham CR, et al. MicroRNA-339 and microRNA-556 regulate Klotho expression in vitro. Age (Dordr). 2014;36(1):141–149. doi: https://doi.org/10.1007/s11357-013-9555-6
  32. Hawkins PG, Morris KV. RNA and transcriptional modulation of gene expression. Cell Cycle. 2008;7(5):602–607. doi: https://doi.org/10.4161/cc.7.5.5522
  33. Yoon HE, Ghee JY, Piao S, et al. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011;26(3):800–813. doi: https://doi.org/10.1093/ndt/gfq537
  34. Wolf G, Wenzel U, Burns KD, et al. Angiotensin II activates nuclear transcription factor-kappaB through AT1 and AT2 receptors. Kidney Int. 2002;61(6):1986–1995. doi: https://doi.org/10.1046/j.1523-1755.2002.00365.x
  35. Mitobe M, Yoshida T, Sugiura H, et al. Oxidative stress decreases klotho expression in a mouse kidney cell line. Nephron Exp Nephrol. 2005;101(2):e67–e74. doi: https://doi.org/10.1159/000086500
  36. Shimizu H, Bolati D, Adijiang A, et al. Indoxyl sulfate downregulates 2renal expression of Klotho through production of ROS and activation of nuclear factor-kB. Am J Nephrol. 2011;33(4):319–324. doi: https://doi.org/10.1159/000324885
  37. Saito K, Ishizaka N, Mitani H, et al. Iron chelation and a free radical scavenger suppress angiotensin II-induced downregulation of klotho, an anti-aging gene, in rat. FEBS Lett. 2003;551(1–3):58–62. doi: https://doi.org/10.1016/s0014-5793(03)00894-9
  38. Behera R, Kaur A, Webster MR, et al. Inhibition of Age-Related Therapy Resistance in Melanoma by Rosiglitazone-Mediated Induction of Klotho. Clin Cancer Res. 2017;23(12):3181–3190. doi: https://doi.org/10.1158/1078-0432.CCR-17-0201
  39. Ewendt F, Feger M, Föller M. Role of Fibroblast Growth Factor 23 (FGF23) and αKlotho in Cancer. Front Cell Dev Biol. 2021;8:601006. doi: https://doi.org/10.3389/fcell.2020.601006
  40. Zhou Q, Lin S, Tang R, et al. Role of Fosinopril and Valsartan on Klotho Gene Expression Induced by Angiotensin II in Rat Renal Tubular Epithelial Cells. Kidney Blood Press Res. 2010;33(3):186–192. doi: https://doi.org/10.1159/000316703
  41. Tang R, Zhou Q-L, Ao X, et al. Fosinopril and losartan regulate klotho gene and nicotinamide adenine dinucleotide phosphate oxidase expression in kidneys of spontaneously hypertensive rats. Kidney Blood Press Res. 2011;34(5):350–357. doi: https://doi.org/10.1159/000326806
  42. Mencke R, Harms G, Moser J, et al. Human alternative Klotho mRNA is a nonsense-mediated mRNA decay target inefficiently spliced in renal disease. JCI Insight. 2017;2(20):e94375. doi: https://doi.org/10.1172/jci.insight.94375
  43. Chen G, Liu Y, Goetz R, et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature. 2018;553(7689):461–466. doi: https://doi.org/10.1038/nature25451
  44. Xie B, Zhou J, Shu G, et al. Restoration of klotho gene expression induces apoptosis and autophagy in gastric cancer cells: tumor suppressive role of klotho in gastric cancer. Cancer Cell Int. 2013;13(1):18. doi: https://doi.org/10.1186/1475-2867-13-18
  45. Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta. 2013;424:53–65. doi: https://doi.org/10.1016/j.cca.2013.05.002
  46. Tang X, Fan Z, Wang Y, et al. Expression of klotho and β-catenin in esophageal squamous cell carcinoma, and their clinicopathological and prognostic significance. Dis Esophagus. 2016;29(3):207–214. doi: https://doi.org/10.1111/dote.12289
  47. Abramovitz L, Rubinek T, Ligumsky H, et al. KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res. 2011;17(13):4254–4266. doi: https://doi.org/10.1158/1078-0432.CCR-10-2749
  48. Arbel Rubinstein T, Reuveni I, Hesin A, et al. A transgenic model reveals the role of Klotho in pancreatic cancer development and paves the way for new Klotho-based Therapy. Cancers (Basel). 2021;13(24):6297. doi: https://doi.org/10.3390/cancers13246297
  49. Tang X, Wang Y, Fan Z, et al. Klotho: a tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab Invest. 2016;96(2):197–205. doi: https://doi.org/10.1038/labinvest
  50. Sun H, Gao Y, Lu K, et al. Overexpression of Klotho suppresses liver cancer progression and induces cell apoptosis by negatively regulating wnt/β-catenin signaling pathway. World J Surg Oncol. 2015;13:307. doi: https://doi.org/10.1186/s12957-015-0717-0
  51. He X-J, Ma Y-Y, Yu S, et al. Up-regulated miR-199a-5p in gastric cancer functions as an oncogene and targets klotho. BMC Cancer. 2014;14:218. doi: https://doi.org/10.1186/1471-2407-14-218
  52. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004. doi: https://doi.org/10.1073/pnas.0307323101
  53. Pan J, Zhong J, Gan LH, et al. Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer. Tumour Biol. 2011;32(4):729–735. doi: https://doi.org/10.1007/s13277-011-0174-5
  54. Arbel Rubinstein T, Shahmoon S, Zigmond E, et al. Klotho suppresses colorectal cancer through modulation of the unfolded protein response. Oncogene. 2019;38(6):794–807. doi: https://doi.org/10.1038/s41388-018-0489-4
  55. Li X-X, Huang L-Y, Peng J-J, et al. Klotho suppresses growth and invasion of colon cancer cells through inhibition of IGF1R-mediated PI3K/AKT pathway. Int J Oncol. 2014;45(2):611–618. doi: https://doi.org/10.3892/ijo.2014.2430
  56. Li Q, Li Y, Liang L, et al. Klotho negatively regulated aerobic glycolysis in colorectal cancer via ERK/HIF1α axis. Cell Commun Signal. 2018;16(1):26. doi: https://doi.org/10.1186/s12964-018-0241-2
  57. Liu Y, Pan J, Pan X, et al. Klotho-mediated targeting of CCL2 suppresses the induction of colorectal cancer progression by stromal cell senescent microenvironments. Mol Oncol. 2019;13(11):2460–2475. doi: https://doi.org/10.1002/1878-0261.12577
  58. Shu G, Xie B, Ren F, et al. Restoration of klotho expression induces apoptosis and autophagy in hepatocellular carcinoma cells. Cell Oncol (Dordr). 2013;36(2):121–129. doi: https://doi.org/10.1007/s13402-012-0118-0
  59. Chen L, Liu H, Liu J, et al. Klotho endows hepatoma cells with resistance to anoikis via VEGFR2/PAK1 activation in hepatocellular carcinoma. PLoS One. 2013;8(3):e58413. doi: https://doi.org/10.1371/journal.pone.0058413
  60. Hernandez-Gea V, Toffanin S, Friedman SL, et al. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512–527. doi: https://doi.org/10.1053/j.gastro.2013.01.002
  61. Jiang B, Gu Y, Chen Y. Identification of novel predictive markers for the prognosis of pancreatic ductal adenocarcinoma. Cancer Invest. 2014;32(6):218–225. doi: https://doi.org/10.3109/07357907.2014.905586
  62. Zhang G, Zhai N, Zhang X. Alkannin represses growth of pancreatic cancer cells based on the down regulation of miR-199a. Biofactors. 2020;46(5):849–859. doi: https://doi.org/10.1002/biof.1613
  63. Chen B, Wang X, Zhao W, et al. Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549. J Exp Clin Cancer Res. 2010;29(1):99. doi: https://doi.org/10.1186/1756-9966-29-99
  64. Chen B., Ma X, Liu Sh, et al. Inhibition of lung cancer cells growth, motility and induction of apoptosis by Klotho, a novel secreted Wnt antagonist, in a dose-dependent manner. Cancer Biol Ther. 2012;13(12):1221–1228. doi: https://doi.org/10.4161/cbt.21420
  65. Chen B, Liang Y, Chen L, et al. Overexpression of Klotho Inhibits HELF Fibroblasts SASP-related Protumoral Effects on Non-small Cell Lung Cancer Cells. J Cancer. 2018;9(7):1248–1258. doi: https://doi.org/10.7150/jca.23967
  66. Usuda J, Ichinose S, Ishizumi T, et al. Klotho predicts good clinical outcome in patients with limited-disease small cell lung cancer who received surgery. Lung Cancer. 2011;74(2):332–337. doi: https://doi.org/10.1016/j.lungcan.2011.03.004
  67. Brominska B, Gabryel P, Jarmołowska-Jurczyszyn D, et al. Klotho expression and nodal involvement as predictive factors for large cell lung carcinoma. Arch Med Sci. 2019;15(4):1010–1016. doi: https://doi.org/10.5114/aoms.2018.75889
  68. Ibi T, Usuda J, Inoue T, et al. Klotho expression is correlated to molecules associated with epithelial-mesenchymal transition in lung squamous cell carcinoma. Oncol Lett. 2017;14(5):5526–5532. doi: https://doi.org/10.3892/ol.2017.6862
  69. Pako J, Bikov A, Barta I, et al. Assessment of the circulating klotho protein in lung cancer patients. Pathol Oncol Res. 2020;26(1):233–238. doi: https://doi.org/10.1007/s12253-018-0441-5
  70. Wang Y, Chen L, Huang G, et al. Klotho sensitizes human lung cancer cell line to cisplatin via PI3k/Akt pathway. PLoS One. 2013;8(2):e57391. doi: https://doi.org/10.1371/journal.pone.0057391
  71. Chen T, Ren H, Thakur A, et al. Decreased Level of Klotho Contributes to Drug Resistance in Lung Cancer Cells: Involving in Klotho-Mediated Cell Autophagy. DNA Cell Biol. 2016;35(12):751–757. doi: https://doi.org/10.1089/dna.2016.3437
  72. Lu L, Katsaros D, Wiley A, et al. Klotho expression in epithelial ovarian cancer and its association with insulin-like growth factors and disease progression. Cancer Invest. 2008;26(2):185–192. doi: https://doi.org/10.1080/07357900701638343
  73. Lojkin I, Rubinek T, Orsulic S, et al. Reduced expression and growth inhibitory activity of the aging suppressor klotho in epithelial ovarian cancer. Cancer Lett. 2015;362(2):149–157. doi: https://doi.org/10.1016/j.canlet.2015.03.035
  74. Yan Y, Wang Y, Xiong Y, et al. Reduced Klotho expression contributes to poor survival rates in human patients with ovarian cancer, and overexpression of Klotho inhibits the progression of ovarian cancer partly via the inhibition of systemic inflammation in nude mice. Mol Med Rep. 2017;15(4):1777–1785. doi: https://doi.org/10.3892/mmr.2017.6172
  75. Aviel-Ronen S, Rubinek T, Zadok O, et al. Klotho expression in cervical cancer: differential expression in adenocarcinoma and squa-mous cell carcinoma. J Clin Pathol. 2016;69(1):53–57. doi: https://doi.org/10.1136/jclinpath-2015-202929
  76. Lee J, Jeong D-J, Kim J, et al. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer. 2010;9:109. doi: https://doi.org/10.1186/1476-4598-9-109
  77. Qureshi R, Arora H, Rizvi MA. EMT in cervical cancer: Its role in tumour progression and response to therapy. Cancer Lett. 2015;356(2 Pt B):321–331. doi: https://doi.org/10.1016/j.canlet.2014.09.021
  78. Wolf I, Levanon-Cohen S, Bose S, et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008;27(56):7094–7105. doi: 10.1038/onc.2008.292
  79. Fenig E, Szyper-Kravitz M, Yerushalmi R, et al. Basic fibroblast growth factor mediated growth inhibition in breast cancer cells is independent of ras signaling pathway. Oncol Rep. 2002;9(4):875-877.
  80. Korah RM, Sysounthone V, Golowa Y, et al. Basic fibroblast growth factor confers a less malignant phenotype in MDA-MB-231 human breast cancer cells. Cancer Res. 2000;60(3):733–740.
  81. Lim SW, Jin L, Luo K, et al. Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress. Cell Death Dis. 2017;8(8):e2972. doi: https://doi.org/10.1038/cddis.2017.365
  82. Rubinek T, Shulman M, Israeli S, et al. Epigenetic silencing of the tumor suppressor klotho in human breast cancer. Breast Cancer Res Treat. 2012;133(2):649–657. doi: https://doi.org/10.1007/s10549-011-1824-4
  83. Ligumsky H, Rubinek T, Merenbakh-Lamin K, et al. Tumor Suppressor Activity of Klotho in Breast Cancer Is Revealed by Structure-Function Analysis. Mol Cancer Res. 2015;13(10):1398–1407. doi: https://doi.org/10.1158/1541-7786.MCR-15-0141
  84. Shmulevich R, Nissim TB, Wolf I, et al. Klotho rewires cellular metabolism of breast cancer cells through alteration of calcium shuttling and mitochondrial activity. Oncogene. 2020;39(24):4636–4649. doi: https://doi.org/10.1038/s41388-020-1313-5
  85. Wolf I, Laitman Y, Rubinek T, et al. Functional variant of KLOTHO: a breast cancer risk modifier among BRCA1 mutation carriers of Ashkenazi origin. Oncogene. 2010;29(1):26–33. doi: https://doi.org/10.1038/onc.2009.301
  86. Zhu Y, Xu L, Zhang J, et al. Klotho suppresses tumor progression via inhibiting PI3K/Akt/GSK3β/Snail signaling in renal cell carcinoma. Cancer Sci. 2013;104(6):663–671. doi: https://doi.org/10.1111/cas.12134
  87. Gigante M, Lucarelli G, Divella C, et al. Soluble Serum αKlotho Is a Potential Predictive Marker of Disease Progression in Clear Cell Renal Cell Carcinoma. Medicine (Baltimore). 2015;94(45):e1917. doi: https://doi.org/10.1097/MD.0000000000001917
  88. Kim J-H, Hwang K-H, Lkhagvadorj S, et al. Klotho plays a critical role in clear cell renal cell carcinoma progression and clinical outcome. Korean J Physiol Pharmacol. 2016;20(3):297–304. doi: https://doi.org/10.4196/kjpp.2016.20.3.297
  89. Hori S, Miyake M, Onishi S, et al. Clinical significance of α and βKlotho in urothelial carcinoma of the bladder. Oncol Rep. 2016;36(4):2117–2125. doi: https://doi.org/10.3892/or.2016.5053
  90. Camilli TC, Xu M, O’Connell MP, et al. Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell Melanoma Res. 2011;24(1):175–186. doi: https://doi.org/10.1111/j.1755-148X.2010.00792.x
  91. Delcroix V, Mauduit O, Tessier N, et al. The Role of the Anti-Aging Protein Klotho in IGF-1 Signaling and Reticular Calcium Leak: Impact on the Chemosensitivity of Dedifferentiated Liposarcomas. Cancers (Basel). 2018;10(11):439. doi: https://doi.org/10.3390/cancers10110439
  92. Shen B, Kwan H-Y, Ma X, et al. cAMP activates TRPC6 channels via the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)-mitogen-activated protein kinase kinase (MEK)-ERK1/2 signaling pathway. J Biol Chem. 2011;286(22):19439–19445. doi: https://doi.org/10.1074/jbc.M110.210294
  93. Li Y, Xiao H-J, Xue F. Overexpression of klotho suppresses growth and pulmonary metastasis of osteosarcoma in vivo. Genet Mol Biol. 2020;43(2):e20190229. doi: https://doi.org/10.1590/1678-4685-GMB-2019-0229
  94. Peshes-Yeloz N, Ungar L, Wohl A, et al. Role of Klotho Protein in Tumor Genesis, Cancer Progression, and Prognosis in Patients with High-Grade Glioma. World Neurosurg. 2019;130:e324–e332. doi: https://doi.org/10.1016/j.wneu.2019.06.082
  95. Zhou X, Fang X, Jiang Y, et al. Klotho, an anti-aging gene, acts as a tumor suppressor and inhibitor of IGF-1R signaling in diffuse large B cell lymphoma. J Hematol Oncol. 2017;10(1):37. doi: https://doi.org/10.1186/s13045-017-0391-5
  96. Zhou X, Zhang Y, Li Y, et al. Klotho suppresses tumor progression via inhibiting IGF-1R signaling in Tcell lymphoma. Oncol Rep. 2017;38(2):967–974. doi: https://doi.org/10.3892/or.2017.5744
  97. Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone. 2017;100:41–49. doi: https://doi.org/10.1016/j.bone.2017.01.017
  98. Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release. 2016;240:287–301. doi: https://doi.org/10.1016/j.jconrel.2016.01.001
  99. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15(7):445–451. doi: https://doi.org/10.1038/nrg3742
  100. Davidsohn N, Pezone M, Vernet A, et al. A single combination gene therapy treats multiple age-related diseases. Proc Natl Acad Sci U S A. 2019;116(47):23505–23511. doi: https://doi.org/10.1073/pnas.1910073116
  101. Shin YJ, Luo K, Quan Y, et al. Therapeutic challenge of minicircle vector encoding klotho in animal model. Am J Nephrol. 2019;49:413–423. doi: https://doi.org/10.1159/000499863
  102. Seo M, Kim MS, Jang A, et al. Epigenetic suppression of the anti-aging gene KLOTHO in human prostate cancer cell lines. Anim Cells Syst (Seoul). 2017;21(4):223–232. doi: https://doi.org/10.1080/19768354.2017.1336112
  103. Scourzic L, Mouly E, Bernard OA. TET proteins and the control of cytosine demethylation in cancer. Genome Med. 2015;7(1):9. doi: https://doi.org/10.1186/s13073-015-0134-6
  104. Gu Y, Chen J, Zhang H, et al. Hydrogen sulfide attenuates renal fibrosis by inducing TET-dependent DNA demethylation on Klotho promoter. FASEB J. 2020;34(9):11474–11487. doi: https://doi.org/10.1096/fj.201902957RR
  105. Bauer C, Göbel K, Nagaraj N, et al. Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT). J Biol Chem. 2015 Feb 20;290(8):4801–4812. doi: https://doi.org/10.1074/jbc.M114.605881
  106. Taghbalout A, Du M, Jillette N, et al. Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nat Commun. 2019;10(1):4296. doi: https://doi.org/10.1038/s41467-019-12339-7
  107. Liu XS, Wu H, Ji X, et al. Editing DNA Methylation in the Mammalian Genome. Cell. 2016;167(1):233–247.e17. doi: https://doi.org/10.1016/j.cell.2016.08.056
  108. Xu X, Tao Y, Gao X, et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2016;2:16009. doi: https://doi.org/10.1038/celldisc.2016.9
  109. King GD, Chen C, Huang MM, et al. Identification of novel small molecules that elevate Klotho expression. Biochem J. 2012;441(1):453–461. doi: https://doi.org/10.1042/BJ20101909
  110. Hu MC, Shi M, Gillings N, et al. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 2017;91(5):1104–1114. doi: https://doi.org/10.1016/j.kint.2016.10.034
  111. Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev. 2017;121:85–100. doi: https://doi.org/10.1016/j.addr.2017.07.009
  112. Chen B, Zhao H, Li M, et al. SHANK1 facilitates non-small cell lung cancer processes through modulating the ubiquitination of Klotho by interacting with MDM2. Cell Death Dis. 2022;13(4):403. doi: https://doi.org/10.1038/s41419-022-04860-3
  113. Usuda J, Ichinose S, Ishizumi T, et al. Klotho is a novel biomarker for good survival in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer. 2011;72(3),355–359. doi: https://doi.org/10.1016/j.lungcan.2010.10.008
  114. Dehghani M, Brobey RK, Wang Y, et al. Klotho inhibits EGF-induced cell migration in Caki-1 cells through inactivation of EGFR and p38 MAPK signaling pathways. Oncotarget. 2018;9(42):26737–26750. doi: https://doi.org/10.18632/oncotarget.25481
  115. Abolghasemi M, Yousefi T, Maniati M, et al. The interplay of Klotho with signaling pathway and microRNAs in cancers. J Cell Biochem. 2019;120(9):14306–14317. doi: https://doi.org/10.1002/jcb.29022

Supplementary files

Supplementary Files
Action
1. Fig. 1

Download (153KB)
2. Fig. 2

Download (294KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies