Composition and Possibility of Application in Practical Medicine of Exosom/Extracellular Vesicles from Multipotent Stromal Cells

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The therapeutic effect of multipotent stem cells (MSCs) is largely mediated by the secretion of exosomes/extracellular vesicles (EMSCs), which reflect the biophysical characteristics of MSC-producers and are considered more effective. The use of EMSCs can help overcome practical and ethical issues that limit cell therapy. The importance of EMSCs is also recognized because of their ability to transfer various proteins, DNA and RNA to target cells and change the behavior of them and neighboring cells. EMSCs contribute to cellular processes such as transcription, proliferation, adhesion, migration and differentiation. EMSCs are involved in the induction of angiogenesis, inhibition of fibrosis, stimulation of extracellular matrix remodeling, abolition of the local inflammatory response, and also in the regulation of immune cell activity. A deeper understanding of the content of EMSC and its dynamics may affect the study and treatment of various diseases. However, EMSCs, even obtained from MSCs of the same origin and cultivated under the same conditions, can differ significantly in their components and, accordingly, in efficiency. Modification, including genetic modification, of the initial cellular elements is of certain importance for purposeful and, therefore, predictable changes in the content of EMSCs, but this approach also does not solve the problem of sufficient standardization of their components. Perhaps more promising is the artificial creation of exosome-like structures with a predetermined composition and, as a result, an accurate and predictable effect.

Full Text

Restricted Access

About the authors

Igor V. Maiborodin

Federal Research Center of Fundamental and Translational Medicine; Institute of Chemical Biology and Fundamental Medicine

Author for correspondence.
Email: imai@mail.ru
ORCID iD: 0000-0002-8182-5084
SPIN-code: 8626-5394

MD, PhD, Professor, Chief Researcher

Russian Federation, Novosibirsk; Novosibirsk

Roman V. Maslov

Federal Research Center of Fundamental and Translational Medicine

Email: pathol@inbox.ru
ORCID iD: 0000-0003-4472-859X

MD, PhD

Russian Federation, Novosibirsk

Maxim E. Ryaguzov

Federal Research Center of Fundamental and Translational Medicine

Email: pathol@inbox.ru
ORCID iD: 0000-0002-5279-3650

MD, PhD

Russian Federation, Novosibirsk

Vitalina I. Maiborodina

Federal Research Center of Fundamental and Translational Medicine

Email: mai_@mail.ru
ORCID iD: 0000-0002-5169-6373
SPIN-code: 8492-6291

MD, PhD

Russian Federation, Novosibirsk

Mikhail I. Voevoda

Federal Research Center of Fundamental and Translational Medicine

Email: director@frcftm.ru
ORCID iD: 0000-0001-9425-413X
SPIN-code: 6133-1780

MD, PhD, Professor, Academician of the RAS

Russian Federation, Novosibirsk

References

  1. Zhou Y, Yamamoto Y, Xiao Z, et al. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med. 2019;8(7):1025. doi: https://doi.org/10.3390/jcm8071025
  2. Janockova J, Slovinska L, Harvanova D, et al. New therapeutic approaches of mesenchymal stem cells-derived exosomes. J Biomed Sci. 2021;28(1):39. doi: https://doi.org/10.1186/s12929-021-00736-4
  3. Hassanzadeh A, Rahman HS, Markov A, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther. 2021;12(1):297. doi: https://doi.org/10.1186/s13287-021-02378-7
  4. Heldring N, Mäger I, Wood MJA, et al. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther. 2015;26(8):506–517. doi: https://doi.org/10.1089/hum.2015.072
  5. Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16(4):415–421. doi: https://doi.org/10.1016/j.ceb.2004.06.003
  6. Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–593. doi: https://doi.org/10.1038/nri2567
  7. Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol. 2018;9:1486. doi: https://doi.org/10.3389/fimmu.2018.01486
  8. Heidari M, Pouya S, Baghaei K, et al. The immunomodulatory effects of adipose-derived mesenchymal stem cells and mesenchymal stem cells-conditioned medium in chronic colitis. J Cell Physiol. 2018;233(11):8754–8766. doi: https://doi.org/10.1002/jcp.26765
  9. Jie Z, Wang YH, Li ZG, et al. Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis. Int J Stem Cells. 2019;12(3):440–448. doi: https://doi.org/10.15283/ijsc18139
  10. Shao L, Zhang Y, Lan B, et al. MiRNA-Sequence Indicates That Mesenchymal Stem Cells and Exosomes Have Similar Mechanism to Enhance Cardiac Repair. Biomed Res Int. 2017;2017:4150705. doi: https://doi.org/10.1155/2017/4150705
  11. Pelizzo G, Avanzini MA, Cornaglia AI, et al. Extracellular vesicles derived from mesenchymal cells: perspective treatment for cutaneous wound healing in pediatrics. Regen Med. 2018;13(4):385–394. doi: https://doi.org/10.2217/rme-2018-0001
  12. Gatti S, Bruno S, Deregibus MC, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant. 2011;26(5):1474–1483. doi: https://doi.org/10.1093/ndt/gfr015
  13. Clark K, Zhang S, Barthe S, et al. Placental mesenchymal stem cell-derived extracellular vesicles promote myelin regeneration in an animal model of multiple sclerosis. Cells. 2019;8(12):1497. doi: https://doi.org/10.3390/cells8121497
  14. Reza-Zaldivar EE, Hernandez-Sapiens MA, Gutierrez-Mercado YK, et al. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen Res. 2019;14(9):1626–34. doi: https://doi.org/10.4103/1673-5374.255978
  15. Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–1301. doi: https://doi.org/10.1634/stemcells.2005-0342
  16. Майбородин И.В., Маслов Р.В., Михеева Т.В., и др. Распределение мультипотентных мезенхимных стромальных клеток и их детрита по организму после подкожного введения // Журнал общей биологии. — 2020. — Т. 81. — № 2. — С. 96–197. [Maiborodin IV, Maslov RV, Mikheeva TV, et al. The distribution of multipotent mesenchymal stromal cells and their detritus throughout the organism after subcutaneous introduction. Journal of General Biology. 2020;81(2):96–107. (In Russ.)] doi: https://doi.org/10.31857/S0044459620020050
  17. Maiborodin I, Lushnikova E, Klinnikova M, et al. Some Special Aspects of Liver Repair after Resection and Administration of Multipotent Stromal Cells in Experiment. Life (Basel). 2021;11(1):66. doi: https://doi.org/10.3390/life11010066
  18. Park KS, Svennerholm K, Shelke GV, et al. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther. 2019;10(1):231. doi: https://doi.org/10.1186/s13287-019-1352-4
  19. Grange C, Tapparo M, Bruno S, et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int J Mol Med. 2014;33(5):1055–1063. doi: https://doi.org/10.3892/ijmm.2014.1663
  20. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/ multipotent cells: the state of transdifferentiation and modes of tissue repaircurrent views. Stem Cells. 2007;25(11):2896–2902. doi: https://doi.org/10.1634/stemcells.2007-0637
  21. Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–856. doi: https://doi.org/10.1038/sj.leu.2404132
  22. Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–823. doi: https://doi.org/10.1038/mt.2015.44
  23. Nielsen T, Kristensen AF, Pedersen S, et al. Investigation of procoagulant activity in extracellular vesicles isolated by differential ultracentrifugation. J Extracell Vesicles. 2018;7(1):1454777. doi: https://doi.org/10.1080/20013078.2018.1454777
  24. Silachev DN, Goryunov KV, Shpilyuk MA, et al. Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells. 2019;8(3):258. doi: https://doi.org/10.3390/cells8030258
  25. Rahman MJ, Regn D, Bashratyan R, et al. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes. 2014;63(3):1008–1020. doi: https://doi.org/10.2337/db13-0859
  26. Du T, Ju G, Wu S, et al. Microvesicles derived from human Wharton’s jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLoS One. 2014;9(5):e96836. doi: https://doi.org/10.1371/journal.pone.0096836
  27. Shi S, Zhang Q, Xia Y, et al. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res. 2016;6(2):459–472.
  28. Alcayaga-Miranda F, Varas-Godoy M, Khoury M. Harnessing the Angiogenic Potential of Stem Cell-Derived Exosomes for Vascular Regeneration. Stem Cells Int. 2016;2016:3409169. doi: https://doi.org/10.1155/2016/3409169
  29. Kahroba H, Hejazi MS, Samadi N. Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer. Cell Mol Life Sci. 2019;76(9):1747–1758. doi: https://doi.org/10.1007/s00018-019-03035-2
  30. Camussi G, Deregibus M-C, Bruno S, et al. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res. 2011;1(1):98–110.
  31. Motavaf M, Pakravan K, Babashah S, et al. Therapeutic application of mesenchymal stem cell-derived exosomes: aA promising cell-free therapeutic strategy in regenerative medicine. Cell Mol Biol. 2016;62(7):74–79. doi: https://doi.org/10.14715/cmb/2016.62.14.13
  32. Qiu G, Zheng G, Ge M, et al. Functional proteins of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 2019;10(1):359. doi: https://doi.org/10.1186/s13287-019-1484-6
  33. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579. doi: https://doi.org/10.1038/nri855
  34. Chen TS, Lai RC, Lee MM, et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010;38(1):215–224. doi: https://doi.org/10.1093/nar/gkp857
  35. Rana S, Yue S, Stadel D, et al. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. 2012;44(9):1574–1584. doi: https://doi.org/10.1016/j.biocel.2012.06.018
  36. Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. doi: https://doi.org/10.3402/jev.v3.26913
  37. Dias MVS, Martins VR, Hajj GNM. Stress-Inducible Protein 1 (STI1): Extracellular Vesicle Analysis and Quantification. Methods Mol Biol. 2016;1459:161–174. doi: https://doi.org/10.1007/978-1-4939-3804-9_11
  38. Ramos TL, Sánchez-Abarca LI, Muntión S, et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Sign. 2016;14:2. doi: https://doi.org/10.1186/s12964-015-0125-7
  39. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–296. doi: https://doi.org/10.1016/j.apsb.2016.02.001
  40. Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–692. doi: https://doi.org/10.1016/j.jmb.2015.09.019
  41. Witwer KW, Soekmadji C, Hill AF, et al. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles. 2017;6(1):1396823. doi: https://doi.org/10.1080/20013078.2017.1396823
  42. Bjørge IM, Kim SY, Mano JF, et al. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine — a new paradigm for tissue repair. Biomater Sci. 2017;6(1):60–78. doi: https://doi.org/10.1039/C7BM00479F
  43. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi: https://doi.org/10.1080/20013078.2018.1535750
  44. Zhang Y, Liu Y, Liu H, et al. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19. doi: https://doi.org/10.1186/s13578-019-0282-2
  45. Li X, Arslan F, Ren Y, et al. Metabolic adaptation to a disruption in oxygen supply during myocardial ischemia and reperfusion is underpinned by temporal and quantitative changes in the cardiac proteome. J Proteome Res. 2012;11(4):2331–2346. doi: https://doi.org/10.1021/pr201025m
  46. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–312. doi: https://doi.org/10.1016/j.scr.2013.01.002
  47. Harting MT, Srivastava AK, Zhaorigetu S, et al. Inflammation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation. Stem Cells. 2018;36(1):79–90. doi: https://doi.org/10.1002/stem.2730
  48. Гусаченко О.Н., Зенкова М.А., Власов В.В. Нуклеиновые кислоты экзосом: маркеры заболеваний и молекулы межклеточной коммуникации // Биохимия. — 2013. — Т. 78. — № 1. — С. 5–13. [Gusachenko ON, Zenkova MA, Vlasov VV. Nucleic acids in exosomes: disease markers and intercellular communication molecules. Biochemistry. 2013;78(1):5–13. (In Russ.)] doi: https://doi.org/10.1134/S000629791301001X
  49. Deng H, Sun C, Sun Y, et al. Lipid, protein, and MicroRNA composition within mesenchymal stem cell-derived exosomes. Cell Reprogram. 2018;20(3):178–186. doi: https://doi.org/10.1089/cell.2017.0047
  50. Qiu G, Zheng G, Ge M, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 2018;9(1):320. doi: https://doi.org/10.1186/s13287-018-1069-9
  51. Zhu L-P, Tian T, Wang J-Y, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8(22):6163–6177. doi: https://doi.org/10.7150/thno.28021
  52. Sierra-Parraga JM, Merino A, Eijken M, et al. Reparative effect of mesenchymal stromal cells on endothelial cells after hypoxic and inflammatory injury. Stem Cell Res Ther. 2020;11(1):352. doi: https://doi.org/10.1186/s13287-020-01869-3
  53. Pires AO, Mendes-Pinheiro B, Teixeira FG, et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem Cells Dev. 2016;25(14):1073–1083. doi: https://doi.org/10.1089/scd.2016.0048
  54. Assunҫão-Silva RC, Mendes-Pinheiro B, Patrício P, et al. Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie. 2018;155:83–91. doi: https://doi.org/10.1016/j.biochi.2018.07.026
  55. Hoang DH, Nguyen TD, Nguyen H-P, et al. Differential Wound Healing Capacity of Mesenchymal Stem Cell-Derived Exosomes Originated From Bone Marrow, Adipose Tissue and Umbilical Cord Under Serum- and Xeno-Free Condition. Front Mol Biosci. 2020;7:119. doi: https://doi.org/10.3389/fmolb.2020.00119
  56. Wang Z-G, He Z-Y, Liang S, et al. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):511. doi: https://doi.org/10.1186/s13287-019-1471-y
  57. Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl Med. 2017;6(1):209–222. doi: https://doi.org/10.5966/sctm.2015-0386
  58. Gradilla A-C, González E, Seijo I, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014;5:5649. doi: https://doi.org/10.1038/ncomms6649
  59. McBride JD, Rodriguez-Menocal L, Guzman W, et al. Bone marrow mesenchymal stem cell-derived CD63+ exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells Dev. 2017;26(19):1384–1398. doi: https://doi.org/10.1089/scd.2017.0087
  60. Ranghino A, Bruno S, Bussolati B, et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther. 2017;8(1):24. doi: https://doi.org/10.1186/s13287-017-0478-5
  61. Xin H, Wang F, Li Y, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 2017;26(2):243–257. doi: https://doi.org/10.3727/096368916X693031
  62. Ju Z, Ma J, Wang C, et al. Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation. 2017;40(2):486–496. doi: https://doi.org/10.1007/s10753-016-0494-0
  63. Yin L, Liu X, Shi Y, et al. Therapeutic advances of stem cell-derived extracellular vesicles in regenerative medicine. Cells. 2020;9(3):707. doi: https://doi.org/10.3390/cells9030707
  64. Shen B, Liu J, Zhang F, et al. CCR2 Positive Exosome Released by Mesenchymal Stem Cells Suppresses Macrophage Functions and Alleviates Ischemia/Reperfusion-Induced Renal Injury. Stem Cells Int. 2016;2016:1240301. doi: https://doi.org/10.1155/2016/1240301
  65. Song N, Zhang T, Xu X, et al. miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation. Front Physiol. 2018;9:790. doi: https://doi.org/10.3389/fphys.2018.00790
  66. Zou X, Zhang G, Cheng Z, et al. Microvesicles derived from human Whartons Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther. 2014;5(2):40. doi: https://doi.org/10.1186/scrt428
  67. Massa M, Croce S, Campanelli R, et al. Clinical Applications of Mesenchymal Stem/Stromal Cell Derived Extracellular Vesicles: Therapeutic Potential of an Acellular Product. Diagnostics (Basel). 2020;10(12):999. doi: https://doi.org/10.3390/diagnostics10120999
  68. Quaglia M, Dellepiane S, Guglielmetti G, et al. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Front Immunol. 2020;11:74. doi: https://doi.org/10.3389/fimmu.2020.00074
  69. Ahn SY, Park WS, Kim YE, et al. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Exp Mol Med. 2018;50(4):1–12. doi: https://doi.org/10.1038/s12276-018-0055-8
  70. Li JW, Wei L, Han Z, et al. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol. 2019;852:68–76. doi: https://doi.org/10.1016/j.ejphar.2019.01.022
  71. Huang R, Qin C, Wang J, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging (Albany NY). 2019;11(18):7996–8014. doi: https://doi.org/10.18632/aging.102314
  72. Monsel A, Zhu Y-G, Gennai S, et al. Therapeutic effects of human mesenchymal stem cellderived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med. 2015;192(3):324–336. doi: https://doi.org/10.1164/rccm.201410-1765OC
  73. Wang H, Zheng R, Chen Q, et al. Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF). Stem Cell Res Ther. 2017;8(1):211. doi: https://doi.org/10.1186/s13287-016-0461-6
  74. Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196(10):1275–1286. doi: https://doi.org/10.1164/rccm.201701-0170OC
  75. Chen J-Y, An R, Liu Z-J, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin. 2014;35(9):1121–1128. doi: https://doi.org/10.1038/aps.2014.61
  76. Sengupta V, Sengupta S, Lazo A, et al. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020;29(12):747–754. doi: https://doi.org/10.1089/scd.2020.0080
  77. Mardpour S, Ghanian MH, Sadeghi-Abandansari H, et al. Hydrogel-mediated sustained systemic delivery of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in chronic liver failure. ACS Appl Mater Interfaces. 2019;11(41):37421–37433. doi: https://doi.org/10.1021/acsami.9b10126
  78. Yu B, Gong M, Wang Y, et al. Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PloS One. 2013;8(8):e73304. doi: https://doi.org/10.1371/journal.pone.0073304
  79. Bodart-Santos V, de Carvalho LRP, de Godoy MA, et al. Extracellular vesicles derived from human Wharton’s jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem Cell Res Ther. 2019;10(1):332. doi: https://doi.org/10.1186/s13287-019-1432-5
  80. Qian X, Xu C, Fang S, et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cells Transl Med. 2016;5(9):1190–1203. doi: https://doi.org/10.5966/sctm.2015-0348
  81. Xin H, Wang F, Li Y, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 2017;26(2):243–257. doi: https://doi.org/10.3727/096368916X693031
  82. Jiang Z-Z, Liu Y-M, Niu X, et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther. 2016;7:24. doi: https://doi.org/10.1186/s13287-016-0287-2
  83. Liang GF, Zhu Y, Ali DJ, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnol. 2020;18(1):10. doi: https://doi.org/10.1186/s12951-019-0563-2

Copyright (c) 2022 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies