Рotential Laboratory Markers of Vincristine-Induced Peripheral Neuropathy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


New chemotherapy agents of haematological malignancies in children often lead to adverse drug reactions, including vincristine-induced peripheral neuropathy (VIPN). The incidence of this pathology ranges from 22 to 72%. The clinic and instrumental evaluation of children with VPN, including questionaries, scales, electrodiagnostic examinations, do not provide an opportunity for prognosis and early detection of chemotherapy-related neurologic complications. Consequently, identifying biomarkers associated with VIPN is urgently warranted that discussed in this review. PubMed and Scopus were browsed based on the keywords that allowed us to select 55 articles (4 systemic reviews, 14 scientific reviews, 37 original articles) between 2017 and 2021. Reports from the included studies clearly emphasize that vincristine-induced peripheral neuropathy is associated with changes in plasma and cerebrospinal fluid (CSF) levels of the nerve growth factor (NGF) light chains of neurofilaments (NfL) and brain derived neurotrophic factor (BDNF) that are biomarkers of axonal damage. However, none of them do have criterion validity — sensitivity and specificity. One of the most promising prognostic biomarkers is CХCL10 and CXCL12 that detect children with or without VIPN (sensitivity — 79%, specificity — 78%). The next task is finding an optimal profile of these cytokines. These cytokines together with axonal biomarkers can be used for the diagnosis and prevention of chemotherapy-induced neurotoxicity in children.

Full Text

Restricted Access

About the authors

Olga P. Kovtun

Ural State Medical University

Email: usma@usma.ru
ORCID iD: 0000-0002-5250-7351
SPIN-code: 9919-9048

MD, PhD, Professor, Academician of the RAS

Russian Federation, Yekaterinburg

Vladimir V. Bazarnyi

Ural State Medical University

Author for correspondence.
Email: vlad-bazarny@yandex.ru
ORCID iD: 0000-0003-0966-9571
SPIN-code: 4813-8710

MD, PhD, Professor

Russian Federation, Yekaterinburg

Oksana V. Koryakina

Ural State Medical University

Email: koryakina09@mail.ru
ORCID iD: 0000-0002-4595-1024
SPIN-code: 4880-6913

MD, PhD, Associate Professor

Russian Federation, Yekaterinburg


  1. Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105(11):2524–2539. doi: https://doi.org/10.3324/haematol.2020.247031
  2. Baas PW, Rao AN, Matamoros AJ, et al. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken). 2016;73(9):442–460. doi: https://doi.org/10.1002/cm.21286
  3. Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci. 2017;10:174. doi: https://doi.org/10.3389/fnmol.2017.00174
  4. Lee BY, Hur EM. A role of microtubules in oligodendrocyte differentiation. Int J Mol Sci. 2020;21(3):1062. doi: https://doi.org/10.3390/ijms21031062
  5. Madsen ML, Due H, Ejskjær N, et al. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother Pharmacol. 2019;84(3):471–485. doi: https://doi.org/10.1007/s00280-019-03884-5
  6. Cioroiu C, Weimer LH. Update on Chemotherapy-Induced Peripheral Neuropathy. Curr Neurol Neurosci Rep. 2017;17(6):47. doi: https://doi.org/10.1007/s11910-017-0757-7
  7. Zajączkowska R, Kocot-Kępska M, Leppert W, et al. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci. 2019;20(6):1451. doi: https://doi.org/10.3390/ijms20061451
  8. van de Velde ME, Kaspers GL, Abbink FCH, et al. Vincristine-induced peripheral neuropathy in children with cancer: A systematic review. Crit Rev Oncol Hematol. 2017;114:114–130. doi: https://doi.org/10.1016/j.critrevonc.2017.04.004
  9. Nama N, Barker MK, Kwan C, et al. Vincristine-induced peripheral neurotoxicity: A prospective cohort. Pediatr Hematol Oncol. 2020;37(1):15–28. doi: https://doi.org/10.1080/08880018.2019.1677832
  10. Li GZ, Hu YH, Li DY, et al. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology. 2020;81:161–171. doi: https://doi.org/10.1016/j.neuro.2020.10.004
  11. Molassiotis A, Cheng HL, Lopez V, et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer. 2019;19(1):132. doi: https://doi.org/10.1186/s12885-019-5302-4
  12. Tunjungsari DA, Gunawan PI, Ugrasena IDG. Risk factors vincristine-induced peripheral neuropathy in acute lymphoblastic leukemia in children. J Med Invest. 2021;68(3.4):232–237. doi: https://doi.org/10.2152/jmi.68.232
  13. Zečkanović A, Jazbec J, Kavčič M. Centrosomal protein72 rs924607 and vincristine-induced neuropathy in pediatric acute lymphocytic leukemia: meta-analysis. Future Sci OA. 2020;6(7):FSO582. doi: https://doi.org/10.2144/fsoa-2020-0044
  14. Wieske L, Smyth D, Lunn MP, et al. Fluid Biomarkers for Monitoring Structural Changes in Polyneuropathies: Their Use in Clinical Practice and Trials. Neurotherapeutics. 2021;18(4):2351–2367. doi: https://doi.org/10.1007/s13311-021-01136-0
  15. Capodivento G, De Michelis C, Carpo M, et al. CSF sphingomyelin: a new biomarker of demyelination in the diagnosis and management of CIDP and GBS. J Neurol Neurosurg Psychiatry. 2021;92(3):303–310. doi: https://doi.org/10.1136/jnnp-2020-324445
  16. Visigalli D, Capodivento G, Basit A, et al. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front Neurol. 2020;11:903. doi: https://doi.org/10.3389/fneur.2020.00903
  17. Niezgoda A, Michalak S, Losy J, et al. sNCAM as a specific marker of peripheral demyelination. Immunol Lett. 2017;185:93–97. doi: https://doi.org/10.1016/j.imlet.2017.03.011
  18. Kim YH, Kim YH, Shin YK, et al. p75 and neural cell adhesion molecule 1 can identify pathologic Schwann cells in peripheral neuropathies. Ann Clin Transl Neurol. 2019;6(7):1292–1301. doi: https://doi.org/10.1002/acn3.50828
  19. Wang H, Davison M, Wang K, et al. Transmembrane protease serine 5: A novel Schwann cell plasma marker for CMT1A. Ann Clin Transl Neurol. 2020;7(1):69–82. doi: https://doi.org/10.1002/acn3.50965
  20. Santacruz CA, Vincent JL, Bader A, et al. Association of cerebrospinal fluid protein biomarkers with outcomes in patients with traumatic and non-traumatic acute brain injury: systematic review of the literature. Crit Care. 2021;25(1):278. doi: https://doi.org/10.1186/s13054-021-03698-z
  21. Wąsik N, Sokół B, Hołysz M, et al. Serum myelin basic protein as a marker of brain injury in aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien). 2020;162(3):545–552. doi: https://doi.org/10.1007/s00701-019-04185-9
  22. Krause K, Wulf M, Sommer P, et al. CSF Diagnostics: A Potentially Valuable Tool in Neurodegenerative and Inflammatory Disorders Involving Motor Neurons: A Review. Diagnostics (Basel). 2021;11(9):1522. doi: https://doi.org/10.3390/diagnostics11091522
  23. Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14(10):577–589. doi: https://doi.org/10.1038/s41582-018-0058-z
  24. Körtvelyessy P, Kuhle J, Düzel E, et al. Ratio and index of Neurofilament light chain indicate its origin in Guillain-Barré Syndrome. Ann Clin Transl Neurol. 2020;7(11):2213–2220. doi: https://doi.org/10.1002/acn3.51207
  25. Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci. 2021;15:689938. doi: https://doi.org/10.3389/fnins.2021.689938
  26. Ticau S, Sridharan GV, Tsour S, et al. Neurofilament Light Chain as a Biomarker of Hereditary Transthyretin-Mediated Amyloidosis. Neurology. 2021;96(3):e412–e422. doi: https://doi.org/10.1212/WNL.0000000000011090
  27. Kim SH, Choi MK, Park NY, et al. Serum neurofilament light chain levels as a biomarker of neuroaxonal injury and severity of oxaliplatin-induced peripheral neuropathy. Sci Rep. 2020;10(1):7995. doi: https://doi.org/10.1038/s41598-020-64511-5
  28. Louwsma J, Brunger AF, Bijzet J, et al. Neurofilament light chain, a biomarker for polyneuropathy in systemic amyloidosis. Amyloid. 2021;28(1):50–55. doi: https://doi.org/10.1080/13506129.2020.1815696
  29. Hayashi T, Nukui T, Piao J-L, et al. Serum neurofilament light chain in chronic inflammatory demyelinating polyneuropathy. Brain Behav. 2021;11(5):е02084. doi: https://doi.org/10.1002/brb3.2084
  30. Sun Q, Tang DD, Yin EG, et al. Diagnostic Significance of Serum Levels of Nerve Growth Factor and Brain Derived Neurotrophic Factor in Diabetic Peripheral Neuropathy. Med Sci Monit. 2018;24:5943–5950. doi: https://doi.org/10.12659/MSM.909449
  31. Youk J, Kim YS, Lim JA, et al. Depletion of nerve growth factor in chemotherapy-induced peripheral neuropathy associated with hematologic malignancies. PLoS One. 2017;12(8):e0183491. doi: https://doi.org/10.1371/journal.pone.0183491
  32. Azoulay D, Giryes S, Nasser R, et al. Prediction of Chemotherapy-Induced Peripheral Neuropathy in Patients with Lymphoma and Myeloma: the Roles of Brain-Derived Neurotropic Factor Protein Levels and A Gene Polymorphism. J Clin Neurol. 2019;15(4):511–516. doi: https://doi.org/10.3988/jcn.2019.15.4.511
  33. Szudy-Szczyrek A, Mlak R, Bury-Kamińska M, et al. Serum brain-derived neurotrophic factor (BDNF) concentration predicts polyneuropathy and overall survival in multiple myeloma patients. Br J Haematol. 2020;191(1):77–89. doi: https://doi.org/10.1111/bjh.16862
  34. Frithiof R, Rostami E, Kumlien E, et al. Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study. Clin Neurophysiol. 2021;132(7):1733–1740. doi: https://doi.org/10.1016/j.clinph.2021.03.016
  35. Sun M, Liu N, Xie Q, et al. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: A systematic review and meta-analysis. Mult Scler Relat Disord. 2021;51:102870. doi: https://doi.org/10.1016/j.msard.2021.102870
  36. Danielson M, Wiklund A, Granath F, et al. Association between cerebrospinal fluid biomarkers of neuronal injury or amyloidosis and cognitive decline after major surgery. Br J Anaesth. 2021;126(2):467–476. doi: https://doi.org/10.1016/j.bja.2020.09.043
  37. Orsi G, Cseh T, Hayden Z, et al. Microstructural and functional brain abnormalities in multiple sclerosis predicted by osteopontin and neurofilament light. Mult Scler Relat Disord. 2021;51:102923. doi: https://doi.org/10.1016/j.msard.2021.102923
  38. Pizzamiglio C, Ripellino P, Prandi P, et al. Nerve conduction, circulating osteopontin and taxane-induced neuropathy in breast cancer patients. Neurophysiol Clin. 2020;50(1):47–54. doi: https://doi.org/10.1016/j.neucli.2019.12.001
  39. Sandelius Å, Blennow K, Zetterberg H, et al. Neurofilament light chain as disease biomarker in a rodent model of chemotherapy induced peripheral neuropathy. Exp Neurol. 2018;307:129–132. doi: https://doi.org/10.1016/j.expneurol.2018.06.005
  40. Velasco R, Navarro X, Gil-Gil M, et al. Neuropathic Pain and Nerve Growth Factor in Chemotherapy-Induced Peripheral Neuropathy: Prospective Clinical-Pathological Study. J Pain Symptom Manage. 2017;54(6):815–825. doi: https://doi.org/10.1016/j.jpainsymman.2017.04.021
  41. Verma P, Devaraj J, Skiles JL, et al. A Metabolomics Approach for Early Prediction of Vincristine-Induced Peripheral Neuropathy. Sci Rep. 2020;10(1):9659. doi: https://doi.org/10.1038/s41598-020-66815-y
  42. Dewan P, Chaudhary P, Gomber S, et al. Oxidative Stress in Cerebrospinal Fluid During Treatment in Childhood Acute Lymphoblastic Leukemia. Cureus. 2021;13(6):e15997. doi: https://doi.org/10.7759/cureus.15997
  43. Hong Z, Wei Z, Xie T, et al. Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol. 2021;14(1):48. doi: https://doi.org/10.1186/s13045-021-01060-y
  44. Lees J.G., Makker P.G.S., Tonkin R.S, et al. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer. 2017;73:22–29. doi: https://doi.org/10.1016/j.ejca.2016.12.006
  45. Starobova H, Monteleone M, Adolphe C, et al. Vincristine-induced peripheral neuropathy is driven by canonical NLRP3 activation and IL-1β release. J Exp Med. 2021;218(5):e20201452. doi: https://doi.org/10.1084/jem.20201452
  46. Zhou L, Ao L, Yan Y, et al. The Therapeutic Potential of Chemokines in the Treatment of Chemotherapy-Induced Peripheral Neuropathy. Curr Drug Targets. 2020;21(3):288–301. doi: https://doi.org/10.2174/138945012066619090615365
  47. Singh G, Singh A, Singh P, et al. Vincristine-Induced Peripheral Neuropathy by Inhibition of Inflammatory Cytokines and NFκB Signaling. ACS Chem Neurosci. 2019;10(6):3008–3017. doi: https://doi.org/10.1021/acschemneuro.9b00206
  48. Gao Y, Tang Y, Zhang H, et al. Vincristine leads to colonic myenteric neurons injury via pro-inflammatory macrophages activation. Biochem Pharmacol. 2021;186:114479. doi: https://doi.org/10.1016/j.bcp.2021
  49. Triarico S, Romano A, Attinà G, et al. Vincristine-Induced Peripheral Neuropathy (VIPN) in Pediatric Tumors: Mechanisms, Risk Factors, Strategies of Prevention and Treatment. Int J Mol Sci. 2021;22(8):4112. doi: https://doi.org/10.3390/ijms22084112
  50. Fumagalli G, Monza L, Cavaletti G, et al. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol. 2021;11:626687. doi: https://doi.org/10.3389/fimmu.2020.626687
  51. Klein I, Lehmann HC. Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. Toxics. 2021;9(10):229. doi: https://doi.org/10.3390/toxics9100229
  52. Koryakina O., Bazarnyi V., Fechina L, et al. Features of the chemokine profile of blood plasma by neurotoxic complications of acute lymphoblastic leukemia in children: preliminary report. International Conference “Longevity Interventions 2020” BIO Web Conf. Volume 22, 2020. doi: https://doi.org/10.1051/bioconf/20202202003
  53. Базарный В.В., Ковтун О.П., Корякина О.В., и др. Исследование цитокинового профиля ликвора при нейротоксических осложнениях химиотерапии острого лимфобластного лейкоза у детей // Биомедицинская химия. — 2021. — Т. 67. — Вып. 4. — С. 374–377. [Bazarnyi VV, Kovtun OP, Koryakina OV, et al. A study of cytokine profile in cerebrospinal fluid of children with acute lymphocytic leukemia and neurotoxic side effects of chemotherapy. Biomeditsinskaya Khimiya. 2021;67(4):374–377. doi: https://doi.org/10.18097/PBMC20216704374
  54. Yang QY, Hu YH, Guo HL, et al. Vincristine-Induced Peripheral Neuropathy in Childhood Acute Lymphoblastic Leukemia: Genetic Variation as a Potential Risk Factor. Front Pharmacol. 2021;12:771487. doi: https://doi.org/10.3389/fphar.2021.771487
  55. Cheung YT, Khan RB, Liu W, et al. Association of Cerebrospinal Fluid Biomarkers of Central Nervous System Injury With Neurocognitive and Brain Imaging Outcomes in Children Receiving Chemotherapy for Acute Lymphoblastic Leukemia. JAMA Oncol. 2018;4(7):e180089. doi: https://doi.org/10.1001/jamaoncol

Supplementary files

There are no supplementary files to display.

Copyright (c) 2022 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies