METHODS OF TISSUE ENGINEERING OF BONE TISSUE IN MAXILLOFACIAL SURGERY

Cover Page

Abstract


For the last decade many experimental and clinical data about the study and application of regenerative medicine methods in the maxillofacial surgery were accumulated. For better bone regeneration mesenchymal stem cells are often used. Considering the general wariness of researchers in some aspects of cell therapy, methods of study of mesenchymal stem cells and the technologies of its clinical application are constantly being upgraded. This review will consider methods of tissue engineering used to regenerate bone tissue defects in maxillofacial surgery.

 


About the authors

A. V. Lyundup

Sechenov First Moscow State Medical University, Russian Federation

Author for correspondence.
Email: lyundup@gmail.com

Russian Federation PhD, Head of Department of Biomedical Research, Research Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University Address: 119992, Moscow, Trubetskaya St., 8/2; tel.: (495) 609-14-00

Yu. A. Medvedev

Sechenov First Moscow State Medical University, Russian Federation

Email: uamedvedev@gmail.com

Russian Federation PhD, Professor, Head of Oral & Maxillofacial Surgery Department, Head of Maxillo-Facial Surgery Hospital, University Hospital No.2, I.M. Sechenov First Moscow State Medical University Address: 119992, Moscow, Pogodinskaya St., 1; tel.: (499) 248-27-50

K. V. Balasanova

Sechenov First Moscow State Medical University, Russian Federation

Email: midian_89@mail.ru

Russian Federation Clinical Resident, Department of Oral & Maxillofacial Surgery, Laboratory Assistant of Research and Education Clinical Center of New Technologies, I.M. Sechenov First Moscow State Medical University Address: 119992, Moscow, Pogodinskaya St., 1; tel.: (499) 248-27-50

N. M. Zolopup

Sechenov First Moscow State Medical University, Russian Federation

Email: golden_n@inbox.ru

Russian Federation Intern, Department of Oral & Maxillofacial Surgery, I.M. Sechenov First Moscow State Medical University Address: 119992, Moscow, Pogodinskaya St., 1; tel.: (499) 248-27-50

S. B. Brodskaya

Sechenov First Moscow State Medical University, Russian Federation

Email: sonyushka1@ya.ru

Russian Federation Research Worker, Research and Education Clinical Center of New Technologies in MaxilloFacial Surgery Hospital, I.M. Sechenov First Moscow State Medical University Address: 119992, Moscow, Pogodinskaya St., 1; tel.: (499) 248-27-50

P. A. Elistratov

Sechenov First Moscow State Medical University, Russian Federation

Email: Flora85@yandex.ru

Russian Federation PhD, Research Worker of Department of Biomedical Research, Research Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University Address: 119992, Moscow, Trubetskaya St., 8/2; tel.: (495) 609-14-00

References

  1. He Y., Zhang Z.Y., Zhu H.G., Qiu W., Jiang X., Guo W. Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three dimensional tricalcium phosphate. J. Craniofac. Surg. 2007; 18 (4): 800–805.
  2. Davo R., Malevez C., Rojas J. Immediate function in the atrophic maxilla using zygoma implants: a preliminary study. J. Prosthet. Dent. 2007; 97 (Suppl. 6): 44–51.
  3. Sjöström M., Sennerby L., Nilson H., Lundgren S. Reconstruction of the atrophic edentulous maxilla with free iliac crest grafts and implants: a 3-year report of a prospective clinical study. Clin. Implant. Dent. Relat. Res. 2007; 9 (1): 46–59.
  4. Taylor G.I. The current status of free vascularized bone grafts. Clin. Plast. Surg. 1983; 10 (1): 185–209.
  5. Zhao J., Zhang Z., Wang S., Sun X., Zhang X., Chen J., Kaplan D.L., Jiang X. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone. 2009; 45 (3): 517–527
  6. Joshi A. An investigation of post-operative morbidity following chin graft surgery. Brit. Dent. J. 2004; 196 (4): 215–218, discussion 211.
  7. Clavero J., Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin. Implant. Dent. Relat. Res. 2003; 5 (3): 154–160.
  8. Crane G.M., Ishaug S.L., Mikos A.G. Bone tissue engineering. Nat. Med. 1995; 1 (12): 1322–1324.
  9. Hollinger J.O., Winn S., Bonadio J. Options for tissue engineering to address challenges of the aging skeleton. Tissue Engl. 2000; 6 (4): 341–350.
  10. Torroni A. Engineered bone grafts and bone flaps for maxillofacial defects: state of the art. J. Oral Maxillofac. Surg. 2009; 67 (5): 1121–1127.
  11. Sanchez-Lara P.A., Zhao H., Bajpai R., Abdelhamid A.I., Warburton D. Impact of stem cells in craniofacial regenerative medicine. Front. Physiol. 2012; 3: 188.
  12. Li J.Y., Christophersen N.S., Hall V., Soulet D., Brundin P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci. 2008; 31: 146–153.
  13. Nelson T.J., Martinez-Fernandez A., Terzic A. Induced pluripotent stem cells: developmental biology to regenerative medicine. Nat. Rev. Cardiol. 2010; 7: 700–710.
  14. Levi B., Glotzbach J.P., Wong V.W., Nelson E.R., Hyun J., Wan D.C., Gurtner G.C., Longaker M.T. Stem cells: update and impact on craniofacial surgery. J. Craniofac. Surg. 2012; 23 (1): 319–322.
  15. Mitrano T.I., Grob M.S., Carrión F., Nova-Lamperti E., Luz P.A., Fierro F.S., Quintero A., Chaparro A., Sanz A. Culture and characterization of mesenchymal stem cells from human gingival tissue. J. Periodontol. 2010; 81 (6): 917–925.
  16. Tang L., Li N., Xie H., Jin Y. Characterization of mesenchymal stem cells from human normal and hyperplastic gingiva. J. Cell Physiol. 2011; 226 (3): 832–842.
  17. Zhang Q.Z., Su W.R., Shi S.H., Wilder-Smith P., Xiang A.P., Wong A., Nguyen A.L., Kwon C.W., Le A.D. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells. 2010; 28 (10): 1856–1868.
  18. FilhoCerruti H., Kerkis I., Kerkis A., Tatsui N.H., da Costa Neves A., Bueno D.F., da Silva M.C. Allogenous bone grafts improved by bone marrow stem cells and platelet growth factors: clinical case reports. Artif. Organs. 2007; 31 (4): 268–273.
  19. Gao J., Dennis J.E., Solchaga L.A., Awadallah A.S., Goldberg V.M., Caplan A.I. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Engl. 2001; 7 (4): 363–371.
  20. Krebsbach P.H., Kuznetsov S.A., Satomura K., Emmons R.V., Rowe D.W., Robey P.G. Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation. 1997; 63 (8): 1059–1069.
  21. Lee C.H., Shah B., Moioli E.K., Mao J.J. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J. Clin. Invest. 2010; 120 (9): 3340–3349.
  22. Lyundup A.V., Onishchenko N.A., Shagidulin M.Yu., Krasheninnikov M.E. Stem / progenitor cells of the liver and bone marrow as regulators of reducing the regeneration of damaged liver. Vestn. transplantol. i iskusstv. organov = Bulletin of Transplantation and Artificial Organs. 2010; 2 (XII): 100–107.
  23. Lyundup A.V., Deev R.V., Trubitsina I.E., Knyazev O.V., Krasheninnikov M.E., Shagidulin M.Yu., Onishchenko N.A. Rol' The role of mesenchymal bone marrow stromal cells in the regeneration of toxic liver damage in rats. Vestn. transplantol. i iskusstv. organov = Bulletin of Transplantation and Artificial Organs. 2010; XII: 291–292.
  24. Holtorf H.L., Jansen J.A., Mikos A.G. Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype. Biomaterials. 2005; 26 (31): 6208–6216.
  25. Macchiarini P., Jungebluth P., Go T., Asnaghi M.A., Rees L.E., Cogan T.A., Dodson A., Martorell J., Bellini S., Parnigotto P.P., Dickinson S.C., Hollander A.P., Mantero S., Conconi M.T., Birchall M.A. Clinical transplantation of a tissue-engineered airway. Lancet. 2008; 372 (9655): 2023–2030.
  26. Marcacci M., Kon E., Moukhachev V., Lavroukov A., Kutepov S., Quarto R., Mastrogiacomo M.. Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Engl. 2007; 13 (5): 947–955.
  27. Yamada Y, Nakamura S, Ito K, Kohgo T, Hibi H, Nagasaka T, Ueda M. Injectable tissue-engineered bone using autogenous bone marrow-derived stromal cells for maxillary sinus augmentation: clinical application report from a 2-6-year follow-up. Tissue Eng. Part A. 2008 Oct;14(10):1699-707.
  28. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant. 2011;20(7):1003-13.
  29. Rossi C.A., PozzobonM., De Coppi P. Advances in musculoskeletal tissue engineering: moving towards therapy. Organogenesis. 2010; 6: 167–172.
  30. Tare R.S., Kanczler J., Aarvold A., Jones A.M., Dunlop D.G., Oreffo R.O. Skeletal stem cells and bone regeneration: translational strategies from bench to clinic. Proc. Inst. Mech. Engl. H. 2010; 224 (12): 1455–1470.
  31. Zhao J., Hu J.,Wang S.Y., Sun X., Xia L., Zhang X., Zhang Z., Jiang X. Combination of β-TCP and BMP-2 gene-modified bMSCs to heal critical size mandibular defects in rats. Oral Dis. 2010; 16 (1): 46–54.
  32. Sato I., Akizuki T., Oda S., Tsuchioka H., Hayashi C., Takasaki A.A., Mizutani K., Kawakatsu N., Kinoshita A., Ishikawa I., Izumi Y. Histological evaluation of alveolar ridge augmentation using injectable calcium phosphate bone cement in dogs. J. Oral Rehabil. 2009; 36 (10): 762–769.
  33. Kawakatsu N., Oda S., Kinoshita A., Kikuchi S., Tsuchioka H., Akizuki T., Hayashi C., Kokubo S., Ishikawa I., Izumi Y. Effect of rhBMP-2 with PLGA/gelatin sponge type (PGS) carrier on alveolar ridge augmentation in dogs. J. Oral Rehabil. 2008; 35 (9): 647–655.
  34. Zhang Z. Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front. Med. 2011; 5 (4): 401–413.
  35. Johnson E.O., Troupis T., Soucacos P.N. Tissue-engineered vascularized bone grafts: basic science and clinical relevance to trauma and reconstructive microsurgery. Microsurgery. 2011; 31 (3): 176–182.
  36. Carano R.D., Filvaroff E.H. Angiogenesis and bone repair. Drug Discov. Today. 2003; 8 (21): 980–989.
  37. Fröhlich M., Grayson W.L.,Wan L.Q., Marolt D., Drobnic M., Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr. Stem Cell Res. Ther. 2008; 3 (4): 254–264.
  38. Kneser U., Schaefer D.J., Polykandriotis E., Horch R.E. Tissue engineering of bone: the reconstructive surgeon’s point of view. J. Cell Mol. Med. 2006; 10 (1): 7–19.
  39. Zou D., Zhang Z., Ye D., Tang A., Deng L., Han W., Zhao J., Wang S., Zhang W., Zhu C., Zhou J., He J., Wang Y., Xu F., Huang Y., Jiang X. Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1α. Stem Cells. 2011; 29 (9): 1380–1390.
  40. Gimbel M., Ashley R.K., Sisodia M., Gabbay J.S., Wasson K.L., Heller J., Wilson L., Kawamoto H.K., Bradley J.P. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. J. Craniofac. Surg. 2007; 18 (4): 895–901.
  41. Herford A.S., Cicciù M. Recombinant human bone morphogenetic protein type 2 jaw reconstruction in patients affected by giant cell tumor. J. Craniofac. Surg. 2010; 21 (6): 1970–1975.
  42. Warnke P.H., Springer I.N., Wiltfang J., Acil Y., Eufinger H., Wehmöller M., Russo P.A., Bolte H., Sherry E., Behrens E., Terheyden H. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004; 364 (9436): 766–770.
  43. Du X., Xie Y., Xian C.J., Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. J. Cell Physiol. 2012; 227 (12): 3731–3743.
  44. Komaki H., Tanaka T., Chazono M., Kikuchi T. Repair of segmental bone defects in rabbit tibiae using a complex of beta-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials. 2006; 27: 5118–5126.
  45. Di Bella C., Farlie P., Penington A.J. Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Engl. Part A. 2008; 14 (4): 483–490.
  46. Gan Y., Dai K., Zhang P., Tang T., Zhu Z., Lu J. The clinical use of enriched bone marrow stem cells combined with porous β-tricalcium phosphate in posterior spinal fusion. Biomaterials. 2008; 29 (29): 3973–3982.

Statistics

Views

Abstract - 267

PDF (Russian) - 376

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies