Risks and limitations of using artificial intelligence in medicine

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The scientific, technical, ethical, and legal aspects of applying artificial intelligence (AI) in modern medicine, as well as its impact on medical professionals and patients, are examined. The research methodology is based on the analysis of scientific publications dedicated to the use of AI in medicine. Systematization of the available data allows identifying key limitations faced by developers of medical AI systems and their users. These issues are related to the quality and completeness of the data on which machine learning models are built, the limited clinical context, challenges in knowledge generalization, and system interoperability. Ethical challenges include concerns about privacy, algorithmic bias, and the distribution of responsibility. Additionally, there are issues regarding the regulatory framework for AI in healthcare and the training of medical professionals in computer technologies. Overcoming these limitations requires improving data quality, developing multimodal systems, increasing algorithm transparency, and refining the regulatory framework.

Full Text

Restricted Access

About the authors

Valery V. Beregovykh

Russian Academy of Sciences; Plekhanov Russian University of Economics

Email: beregovykh@ramn.ru
ORCID iD: 0000-0002-0210-4570
SPIN-code: 5940-7554

PhD in Technical Sciences, Professor, Academician of the RAS

Russian Federation, Moscow; Moscow

Vladimir I. Panteleev

Plekhanov Russian University of Economics

Author for correspondence.
Email: vpantel@mail.ru
ORCID iD: 0000-0002-1575-1267
SPIN-code: 4095-8670

MD, PhD

Russian Federation, 36 Stremyanny per., 109992, Moscow

Nikolay L. Shimanovsky

Plekhanov Russian University of Economics

Email: shimann@yandex.ru
ORCID iD: 0000-0001-8887-4420
SPIN-code: 5232-8230

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, Moscow

Pavel G. Roitberg

Plekhanov Russian University of Economics

Email: roitbergpg@rea.ru
ORCID iD: 0000-0002-9813-0385

PhD in Economics

Russian Federation, Moscow

References

  1. Указ Президента РФ от 10.10.2019 № 490 «О развитии искусственного интеллекта в Российской Федерации». Available from: http://www.kremlin.ru/acts/bank/4473 (accessed: 15.05.2025).
  2. Богомолов А.И., Невежин В.П., Жданов Г.А. Искусственный интеллект и экспертные системы в мобильной медицине // Хроноэкономика. — 2018. — Т. 3. — № 11. — С. 17–28. [Bogomolov AI, Nevezhin VP, Zhdanov GA. Artificial intelligence and expert systems in mobile medicine. Hronoeconomics. 2018;3(11);17–28. (In Russ.)] Available from: https://www.elibrary.ru/item.asp?id=35353718
  3. Russell S, Norvig P. (eds) Artificial Intelligence: A Modern Approach. 4th ed. Pearson; 2020.
  4. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017;60(6):84–90. doi: https://doi.org/10.1145/3065386
  5. Kim Y, Denton C, Hoang L, et al. Structured attention networks. 2017. doi: https://doi.org/10.48550/arXiv.1702.00887
  6. Khan Z, Gaidhane AM, Singh M, et al. Diagnostic Accuracy of IDX-DR for Detecting Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Am J Ophthalmol. 2025;273:192–204. doi: https://doi.org/10.1016/j.ajo.2025.02.022
  7. Darcy A, Beaudette A, Chiauzzi E, et al. Anatomy of a Woebot® (WB001): agent guided CBT for women with postpartum depression. Expert Rev Med Devices. 2023;20(12):1035–1049. doi: https://doi.org/10.1080/17434440.2023.2280686
  8. Гусев А.В., Артемова О.Р., Васильев Ю.А., и др. Внедрение медицинских изделий с технологиями искусственного интеллекта в здравоохранении России: итоги 2023 г. // Национальное здравоохранение. — 2024. — Т. 5. — № 2. — С. 17–24. [Gusev AV, Artemova OR, Vasiliev YA, et al. Integration of AI-based software as a medical device into Russian healthcare system: results of 2023. National Health Care (Russia). 2024;5(2):17–24. (In Russ.)] doi: https://doi.org/10.47093/2713-069X.2024.5.2.17-24
  9. Ламоткин А.И., Корабельников Д.И., Ламоткин И.А., и др. Искусственный интеллект в здравоохранении и медицине: история ключевых событий, его значимость для врачей, уровень развития в разных странах // ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. — 2024. — Т. 17. — № 2. — С. 243–250. [Lamotkin AI, Korabelnikov DI, Lamotkin IA, et al. Artificial intelligence in healthcare and medicine: the history of key events, its significance for doctors, the level of development in different countries. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2024;17(2):243–250. (In Russ.)] doi: https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.254
  10. Rahman MA, Victoros E, Ernest J, et al. Impact of Artificial Intelligence (AI) Technology in Healthcare Sector: A Critical Evaluation of Both Sides of the Coin. Clin Pathol. 2024;17:2632010X241226887. doi: https://doi.org/10.1177/2632010X241226887
  11. Васильев Ю.А., Сычёв Д.А., Бажин А.В., и др. Автономный искусственный интеллект для сортировки результатов профилактических рентгенологических исследований органов грудной клетки: медицинская и экономическая эффективность // Digital Diagnostics. — 2025. — Т. 6. — № 1. — С. 5–22. [Vasilev YuA, Sychev DA, Bazhin AV, et al. Autonomous artificial intelligence for sorting results of preventive radiological examinations of chest organs: medical and economic efficiency. Digital Diagnostics. 2025;6(1):5–22. (In Russ.)] doi: https://doi.org/10.17816/DD641703
  12. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020;92(4):807–812. doi: https://doi.org/10.1016/j.gie.2020.06.040
  13. Xiong W, Zhan Y, Xiao R, et al. Advancing sepsis diagnosis and immunotherapy machine learning-driven identification of stable molecular biomarkers and therapeutic targets. Sci Rep. 2025;15(1):8333. doi: https://doi.org/10.1038/s41598-025-93010-8
  14. Wang YJ, Choo WC, Ng KY, et al. Evolution of AI enabled healthcare systems using textual data with a pretrained BERT deep learning model. Sci Rep. 2025;15(1):7540. doi: https://doi.org/10.1038/s41598-025-91622-8
  15. Pal S, Bhattacharya M, Islam MA, et al. ChatGPT or LLM in next-generation drug discovery and development: pharmaceutical and biotechnology companies can make use of the artificial intelligence-based device for a faster way of drug discovery and development. Int J Surg. 2023;109(12):4382–4384. doi: https://doi.org/10.1097/JS9.0000000000000719
  16. Филимонов О. А., Ладыкин Ю.С. Некоторые этические аспекты применения искусственного интеллекта в медицине // International Journal of Humanities and Natural Sciences. — 2024. — Т. 6–4. — № 93. — С. 116–122. [Filimonov OA, Ladykin YS. Some ethical aspects of the use of artificial intelligence in medicin. International Journal of Humanities and Natural Sciences, 2024,6-4(93):116–122. (In Russ.)] doi: https://doi.org/10.24412/2500-1000-2024-6-4-116-122
  17. Khan B, Fatima H, Qureshi A, et al. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomed Mater Devices. 2023;1–8. doi: https://doi.org/10.1007/s44174-023-00063-2
  18. Svensson AM, Jotterand F. Doctor Ex Machina: A Critical Assessment of the Use of Artificial Intelligence in Health Care. J Med Philos. 2022;47(1):155–178. doi: https://doi.org/10.1093/jmp/jhab036
  19. Аликперова Н.В. Искусственный интеллект в здравоохранении: риски и возможности // Здоровье мегаполиса. — 2023. — Т. 4. — № 3. — С. 41–49. [Alikperova NV. Artificial intelligence in healthcare: risks and opportunities. City Healthcare. 2023;4(3):41–49. (In Russ.)] doi: https://doi.org/10.47619/2713-2617.zm.2023.v.4i3;41-49
  20. Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics. 2021;22(1):122. doi: https://doi.org/10.1186/s12910-021-00687-3
  21. Приказ Минздрава России от 14.06.2018 № 341н «Об утверждении порядка обезличивания сведений о лицам, которым оказывается медицинская помощь, а также о лицах, в отношении которых проводятся медицинские экспертизы, медицинские осмотры и медицинские освидетельствования». Available from: https://minjust.consultant.ru/documents/40226 (accessed: 15.05.2025).
  22. Müller M, Kettemann MC. European Approaches to the Regulation of Digital Technologies. In: Werthner H, Ghezzi C, Kramer J, et al. Introduction to Digital Humanism. Springer, Cham; 2024. P. 623–637. doi: https://doi.org/10.1007/978-3-031-45304-5_39
  23. Приказ Минздрава России от 20.03.2025 № 139н «Об утверждении Порядка обезличивания сведений о лицах, которым оказывается медицинская помощь, а также о лицах, в отношении которых проводятся медицинские экспертизы, медицинские осмотры и медицинские освидетельствования». Available from: http://publication.pravo.gov.ru/document/0001202504140009?index=1 (accessed: 15.05.2025).
  24. Pournik O, Mukherjee T, Ghalichi L, et al. How Interoperability Challenges Are Addressed in Healthcare IoT Projects. Stud Health Technol Inform. 2023;309:121–125. doi: https://doi.org/10.3233/SHTI230754
  25. Yaoguang L, Wei C, Cong W. Identifying the mislabeled training samples of ECG signals using machine learning. Biomedical Signal Processing and Control. 2019;47:168–176. doi: https://doi.org/10.1016/j.bspc.2018.08.026
  26. Joshi P, Thapa C, Camtepe S, et al. Performance and Information Leakage in Splitfed Learning and Multi-Head Split Learning in Healthcare Data and Beyond. Methods Protoc. 2022;5(4):60. doi: https://doi.org/10.3390/mps5040060
  27. Lundberg S, Lee SI. A unified approach to interpreting model predictions. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. doi: https://doi.org/10.48550/arXiv.1705.07874
  28. Ribeiro M, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. 2016;97–101. doi: https://doi.org/10.48550/arXiv.1602.04938
  29. Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. doi: https://doi.org/10.48550/arXiv.1706.03762
  30. Selvaraju R, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2019;128;336-539. doi: https://doi.org/10.1007/s11263-019-01228-7
  31. Wolff J, Pauling J, Keck A, et al. The Economic Impact of Artificial Intelligence in Health Care: Systematic Review. J Med Internet Res. 2020;22(2):e16866. doi: https://doi.org/10.2196/16866
  32. Морозов Д.Ю., Омельяновский В.В. Нужен ли искусственный интеллект системе здравоохранения? // Медицинские технологии. Оценка и выбор. — 2024. — Т. 46. — № 4. — С. 40–48. [Morozov DYu, Omelyanovskiy VV. Is artificial intelligence necessary for healthcare system? Medical Technologies. Assessment and Choice. 2024;46(4):40–48. (In Russ.)] doi: https://doi.org/10.17116/medtech20244604140
  33. Mårtensson G, Ferreira D, Granberg T, et al. The reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort study. Med Image Anal. 2020;66:101714. doi: https://doi.org/10.1016/j.media.2020.101714
  34. Freeman K, Geppert J, Stinton C, et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. BMJ. 2021;374:n1872. doi: https://doi.org/10.1136/bmj.n1872
  35. Nong P, Adler-Milstein J, Apathy NC, et al. Current Use and Evaluation of Artificial Intelligence And Predictive Models in US Hospitals. Health Aff (Millwood). 2025;44(1):90–98. doi: https://doi.org/10.1377/hlthaff.2024.00842
  36. Васюта Е.А., Подольская Т.В. Проблемы и перспективы внедрения искусственного интеллекта в медицине // Государственное и муниципальное управление. Ученые записки. — 2022. — № 1. — С. 25–32. [Vasyuta EA, Podolskaya TV. Challenges and Prospects for the Introduction of Artificial Intelligence in Medicine. State and Municipal Management. Scholar Notes. 2022;1:25–32. (In Russ.)] doi: https://doi.org/10.22394/2079-1690-2022-1-1-25-32
  37. Alami H, Lehoux P, Denis JL, et al. Organizational readiness for artificial intelligence in health care: insights for decision-making and practice. J Health Organ Manag. 2021;(35)1:106–114. doi: https://doi.org/10.1108/JHOM-03-2020-0074
  38. Кочетова Ю.Ю. Искусственный интеллект в медицине: этические проблемы коммуникации между врачом и пациентом // Биоэтика. — 2024. — Т. 17. — № 1. — С. 38–43. [Kochetova YY. Artificial intelligence in medicine: ethical problems of communication between a doctor and a patient. Bioethics Journal. 2024;17(1):38–43. (In Russ.)] doi: https://doi.org/10.19163/2070-1586-2024-17-1-38-43
  39. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–243. doi: https://doi.org/10.1136/svn-2017-000101
  40. Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119. doi: https://doi.org/10.1038/s41746-020-00323-1
  41. Kelly CJ, Karthikesalingam A, Suleyman M, et al. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195. doi: https://doi.org/10.1186/s12916-019-1426-2
  42. Charow R, Jeyakumar T, Younus S, et al. Artificial Intelligence Education Programs for Health Care Professionals: Scoping Review. JMIR Med Educ. 2021;7(4):e31043. doi: https://doi.org/10.2196/31043
  43. Stai B, Heller N, McSweeney S, et al. Public Perceptions of Artificial Intelligence and Robotics in Medicine. J Endourol. 2020;34(10):1041–1048. doi: https://doi.org/10.1089/end.2020.0137
  44. Lal A, Dang J, Nabzdyk C, et al. Regulatory oversight and ethical concerns surrounding software as medical device (SaMD) and digital twin technology in healthcare. Ann Transl Med. 2022;10(18):950. doi: https://doi.org/10.21037/atm-22-4203

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies