Prognostic Significance and Pathophysiological Mechanisms of Increasing the Levels of Cardiospecific Troponins in Biological Fluids in Arterial Hypertension (Literature Review)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Improved laboratory methods for the determination of cardiac troponins (cTnT and cTnI) with increased sensitivity (hs-cTnT and hs-cTnI), recently introduced into clinical practice, have opened up a number of new promising areas for research with the aim of further expanding diagnostic capabilities for the subsequent use of hs-cTnT and hs-cTnI in modern clinical practice. It has been shown that with the use of the highly sensitive methods, even the most insignificant and reversible damage to cardiomyocytes (for example, during physical exertion, psychoemotional stress, and other conditions) is accompanied by diagnostically significant increases in hs-cTnT and hs-cTnI levels. The introduction of highly sensitive immunoassays also changed a number of ideas about the biology of cardiac troponins, for example, they are no longer considered strictly intracellular molecules, since they are determined in all healthy patients and, accordingly, they can be considered as products of normal metabolism of cardiomyocytes when they appear in blood serum in small concentrations (less than 99 percentile). In addition to the accelerated acute myocardial infarction diagnosis, hs-cTnT and hs-cTnI have a high predictive value in a number of pathological conditions that cause non-ischemic cardiomyocytes damage. Currently, the possibility of using hs-Tn in the early stages of pathogenesis of cardiovascular disease or in patients with certain risk factors (for example, arterial hypertension) to assess the risk of possible short-term and long-term adverse cardiovascular events draws an enormous interest. The purpose of this article is to analyze the prognostic significance of highly sensitive cardiospecific troponins in patients suffering from arterial hypertension, to summarize and discuss possible pathophysiological mechanisms of cardiomyocyte damage and increased levels of hs-cTnT and hs-cTnI in these patients.

Full Text

Restricted Access

About the authors

Aleksey M. Chaulin

Samara State Medical University; Samara Regional Cardiology Dispensary

Author for correspondence.
Email: alekseymichailovich22976@gmail.com
ORCID iD: 0000-0002-2712-0227
SPIN-code: 1107-0875
Scopus Author ID: 6506421183
https://www.researchgate.net/profile/Aleksey-Chaulin

MD, PhD Student

Russian Federation, 171, Artsibyeshevskaya street, 443001 Samara; Samara

References

  1. Chaulin AM. Cardiac troponins: current information on the main analytical characteristics of determination methods and new diagnostic possibilities. Medwave. 2021;21(11):e8498. doi: https://doi.org/10.5867/medwave.2021.11.002132
  2. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289–1367. doi: https://doi.org/10.1093/eurheartj/ehaa575.
  3. Punukollu G, Gowda RM, Khan IA, et al. Elevated serum cardiac troponin I in rhabdomyolysis. Int J Cardiol. 2004;96(1):35–40. doi: https://doi.org/10.1016/j.ijcard.2003.04.053
  4. Ricchiutti V, Apple FS. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin Chem. 1999;45(12):2129–2135. doi: https://doi.org/10.1093/clinchem/45.12.2129
  5. Messner B, Baum H, Fischer P, et al. Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Am J Clin Pathol. 2000;114(4):544–549. doi: https://doi.org/10.1309/8KCL-UQRF-6EEL-36XK
  6. Schmid J, Liesinger L, Birner-Gruenberger R, et al. Elevated Cardiac Troponin T in Patients with Skeletal Myopathies. J Am Coll Cardiol. 2018;71(14):1540–1549. doi: https://doi.org/10.1016/j.jacc.2018.01.070
  7. Дупляков Д.В., Чаулин А.М. Мутации сердечных тропонинов, ассоциированные с кардиомиопатиями // Кардиология: новости, мнения, обучение. — 2019. — Т. 7. — № 3. — С. 8–17. [Duplyakov DV, Chaulin AM. Mutations of heart troponines, associated with cardiomyopathies. Kardiologiya: novosti, mneniya, obuchenie. Cardiology: News, Opinions, Training. 2019;7(3):8–17. (In Russ.)] doi: https://doi.org/10.24411/2309-1908-2019-13001
  8. Chaulin AM. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 1. Life (Basel). 2021;11(9):914. doi: https://doi.org/10.3390/life11090914
  9. Чаулин А.М., Абашина О.Е., Дупляков Д.В. Высокочувствительные сердечные тропонины (hs-Tn): методы определения и основные аналитические характеристики // Кардиоваскулярная терапия и профилактика. — 2021. — Т. 20. — № 2. — С. 2590. [Chaulin AM, Abashina OE, Duplyakov DV. High-sensitivity cardiac troponins: detection and central analytical characteristics. Cardiovascular Therapy and Prevention. 2021;20(2):2590. (In Russ.)] doi: https://doi.org/10.15829/1728-8800-2021-2590
  10. Thygesen K, Alpert JS, Jaffe AS, et al. Executive Group on behalf of the Joint European Society of Cardiology (ESC) / American College of Cardiology (ACC) / American Heart Association (AHA) / World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Glob Heart. 2018;13(4):305–338. doi: https://doi.org/10.1016/j.gheart.2018.08.004
  11. Chaulin AM. Main analytical characteristics of laboratory methods for the determination of cardiac troponins: A review from the historical and modern points of view. Orv Hetil. 2022;163(1):12–20. doi: https://doi.org/10.1556/650.2021.32296
  12. Garcia-Osuna A, Gaze D, Grau-Agramunt M, et al. Ultrasensitive quantification of cardiac troponin I by a Single Molecule Counting method: Analytical validation and biological features. Clin Chim Acta. 2018;486:224–231. doi: https://doi.org/10.1016/j.cca.2018.08.015
  13. Chaulin AM. Cardiac Troponins Metabolism: From Biochemical Mechanisms to Clinical Practice (Literature Review). Int J Mol Sci. 2021;22(20):10928. doi: https://doi.org/10.3390/ijms222010928
  14. Haeckel R. The influence of age and other biological variables on the estimation of reference limits of cardiac troponin T. Clin Chem Lab Med. 2018;56(5):685–687. doi: https://doi.org/10.1515/cclm-2017-1082
  15. Bohn MK, Higgins V, Kavsak P, et al. High-Sensitivity Generation 5 Cardiac Troponin T Sex- and Age-Specific 99th Percentiles in the CALIPER Cohort of Healthy Children and Adolescents. Clin Chem. 2019;65(4):589–591. doi: https://doi.org/10.1373/clinchem.2018.299156
  16. Chaulin AM, Duplyakov DV. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae. 2021;17(3)79–84. doi: https://doi.org/10.22514/sv.2021.050
  17. Chaulin AM, Duplyakova PD, Duplyakov DV. Circadian rhythms of cardiac troponins: Mechanisms and clinical significance. Russian Journal of Cardiology. 2020;25(3S):4061. doi: https://doi.org/10.15829/1560-4071-2020-4061
  18. Sigurdardottir FD, Lyngbakken MN, Holmen OL, et al. Relative Prognostic Value of Cardiac Troponin I and C-Reactive Protein in the General Population (from the Nord-Trøndelag Health [HUNT] Study). Am J Cardiol. 2018;121(8):949–955. doi: https://doi.org/10.1016/j.amjcard.2018.01.004
  19. Chaulin AM, Duplyakov DV. MicroRNAs in Atrial Fibrillation: Pathophysiological Aspects and Potential Biomarkers. International Journal of Biomedicine. 2020;10(3):198–205. doi: https://doi.org/10.21103/Article10(3)_RA3
  20. Ukena C, Kindermann M, Mahfoud F, et al. Diagnostic and prognostic validity of different biomarkers in patients with suspected myocarditis. Clin Res Cardiol. 2014;103(9):743–751. doi: https://doi.org/10.1007/s00392-014-0709-z
  21. Chaulin AM, Abashina OE, Duplyakov DV. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russian Open Medical Journal. 2020;9:e0305. doi: https://doi.org/10.15275/rusomj.2020.0305
  22. Чаулин А.М., Дупляков Д.В. Аритмогенные эффекты доксорубицина // Комплексные проблемы сердечно-сосудистых заболеваний. — 2020. — Т. 9. — № 3. — С. 69–80. [Chaulin AM, Duplyakov DV. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases. 2020;9(3):69–80. (In Russ.)] doi: https://doi.org/10.17802/2306-1278-2020-9-3-69-80
  23. Everett BM, Brooks MM, Vlachos HE, et al. BARI 2D Study Group. Troponin and Cardiac Events in Stable Ischemic Heart Disease and Diabetes. N Engl J Med. 2015;373(7):610–620. doi: https://doi.org/10.1056/NEJMoa1415921
  24. Samaha E, Brown J, Brown F, et al. High-sensitivity cardiac troponin T increases after stress echocardiography. Clin Biochem. 2019;63:18–23. doi: https://doi.org/10.1016/j.clinbiochem.2018.11.013
  25. Omland T, Aakre KM. Cardiac Troponin Increase after Endurance Exercise. Circulation. 2019;140(10):815–818. doi: https://doi.org/10.1161/CIRCULATIONAHA.119.042131
  26. Caligiuri SP, Austria JA, Pierce GN. Alarming Prevalence of Emergency Hypertension Levels in the General Public Identified by a Hypertension Awareness Campaign. Am J Hypertens. 2017;30(3):236–239. doi: https://doi.org/10.1093/ajh/hpw136
  27. Lindner G, Pfortmueller CA, Braun CT, et al. Non-acute myocardial infarction-related causes of elevated high-sensitive troponin T in the emergency room: A cross-sectional analysis. Intern Emerg Med. 2014;9(3):335–339. doi: https://doi.org/10.1007/s11739-013-1030-y
  28. Long B, Long DA, Tannenbaum L, et al. An emergency medicine approach to troponin elevation due to causes other than occlusion myocardial infarction. Am J Emerg Med. 2020;38(5):998–1006. doi: https://doi.org/10.1016/j.ajem.2019.12.007
  29. Masri W, Le Guillou E, Hamdi E, et al. Troponin elevation in other conditions than acute coronary syndromes. Ann Biol Clin (Paris). 2017;75(4):411–419. doi: https://doi.org/10.1684/abc.2017.1262
  30. Harvell B, Henrie N, Ernst AA, et al. The meaning of elevated troponin I levels: Not always acute coronary syndromes. Am J Emerg Med. 2016;34(2):145–148. doi: https://doi.org/10.1016/j.ajem.2015.09.037
  31. Afonso L, Bandaru H, Rathod A, et al. Prevalence, determinants, and clinical significance of cardiac troponin-I elevation in individuals admitted for a hypertensive emergency. J Clin Hypertens (Greenwich). 2011;13(8):551–556. doi: https://doi.org/10.1111/j.1751-7176.2011.00476.x
  32. Papadopoulos DP, Sanidas EA, Viniou NA, et al. Cardiovascular hypertensive emergencies. Curr Hypertens Rep. 2015;17(2):5. doi: https://doi.org/10.1007/s11906-014-0515-z
  33. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–3104. doi: https://doi.org/10.1093/eurheartj/ehy339
  34. Acosta G, Amro A, Aguilar R, et al. Clinical Determinants of Myocardial Injury, Detectable and Serial Troponin Levels among Patients with Hypertensive Crisis. Cureus. 2020;12(1):e6787. doi: https://doi.org/10.7759/cureus.6787
  35. Pattanshetty DJ, Bhat PK, Aneja A, et al. Elevated troponin predicts long-term adverse cardiovascular outcomes in hypertensive crisis: A retrospective study. J Hypertens. 2012;30(12):2410–2415. doi: https://doi.org/10.1097/HJH.0b013e3283599b4f
  36. Talha Ayub M, Torres C, Del Cid J, et al. The prognostic significance of highly sensitive cardiac troponin i elevation in patients presenting with hypertensive crisis. Circulation. 2019;140:A16333. doi: https://doi.org/10.1161/circ.140.suppl_1.16333
  37. Omondi A, Villablanca Spinetto P, Kargoli F, et al. Prevalence and prognostic significance of cardiac troponin-T elevation in patients admitted with hypertensive crises. JACC. 2017;69:1803. doi: https://doi.org/10.1016/S0735-1097(17)35192-6
  38. de Lemos JA, Drazner MH, Omland T, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304(22):2503–2512. doi: https://doi.org/10.1001/jama.2010.1768
  39. McEvoy JW, Chen Y, Nambi V, et al. High-Sensitivity Cardiac Troponin T and Risk of Hypertension. Circulation. 2015;132(9):825–833. doi: https://doi.org/10.1161/CIRCULATIONAHA.114.014364
  40. Uçar H, Gür M, Kivrak A, et al. High-sensitivity cardiac troponin T levels in newly diagnosed hypertensive patients with different left ventricle geometry. Blood Press. 2014;23(4):240–247. doi: https://doi.org/10.3109/08037051.2013.840429
  41. Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte cell death. J Clin Invest. 1995;96(5):2247–2259. doi: https://doi.org/10.1172/JCI118280
  42. Singh K, Xiao L, Remondino A, Sawyer DB, et al. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol. 2001;189(3):257–265. doi: https://doi.org/10.1002/jcp.10024
  43. Dalal S, Connelly B, Singh M, et al. NF2 signaling pathway plays a pro-apoptotic role in β-adrenergic receptor stimulated cardiac myocyte apoptosis. PLoS One. 2018;13(4):e0196626. doi: https://doi.org/10.1371/journal.pone.0196626
  44. Weil B., Suzuki G, Young RF, et al. Troponin release and reversible left ventricular dysfunction after transient pressure overload. J Am Coll Cardiol. 2018;71(25):2906–2916. doi: https://doi.org/10.1016/j.jacc.2018.04.029
  45. Feng J, Schaus BJ, Fallavollita JA, et al. Preload induces troponin I degradation independently of myocardial ischemia. Circulation. 2001;103(16):2035–2037. doi: https://doi.org/10.1161/01.cir.103.16.2035
  46. Chaulin AM. Phosphorylation and Fragmentation of the Cardiac Troponin T: Mechanisms, Role in Pathophysiology and Laboratory Diagnosis. International Journal of Biomedicine. 2021;11(3):250–259. doi: https://doi.org/10.21103/Article11(3)_RA2
  47. Maekawa A, Lee J-K, Nagaya T, et al. Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. J Mol Cell Cardiol. 2003;35(10):1277–1284. doi: https://doi.org/10.1016/s0022-2828(03)00238-4
  48. Katrukha IA, Kogan AE, Vylegzhanina AV, et al. Thrombin-Mediated Degradation of Human Cardiac Troponin T. Clin Chem. 2017;63(6):1094–1100. doi: https://doi.org/10.1373/clinchem.2016.266635
  49. Derhaschnig U, Testori C, Riedmueller E, et al. Hypertensive emergencies are associated with elevated markers of inflammation, coagulation, platelet activation and fibrinolysis. J Hum Hypertens. 2013;27(6):368–373. doi: https://doi.org/10.1038/jhh.2012.53
  50. Lazzarino AI, Hamer M, Gaze D, et al. The association between cortisol response to mental stress and high sensitivity cardiac troponin T plasma concentration in healthy adults. J Am Coll Cardiol. 2013;62(18):1694–1701. doi: https://doi.org/10.1016/j.jacc.2013.05.070
  51. Hessel MHМ, Atsma DE, van der Valk EJМ, et al. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. 2008;455(6):979–986. doi: https://doi.org/10.1007/s00424-007-0354-8
  52. Dubin RF, Li Y, He J, et al. CRIC Study Investigators. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: A cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 2013;14:229. doi: https://doi.org/10.1186/1471-2369-14-229
  53. Ziebig R, Lun A, Hocher B, et al. Renal elimination of troponin T and troponin I. Clin Chem. 2003;49(7):1191–1193. doi: https://doi.org/10.1373/49.7.1191
  54. Pervan P, Svaguša T, Prkacin I, et al. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae. 2017;13:62–64. doi: https://doi.org/10.22514/SV133.062017.13
  55. Chen J-Y, Lee S-Y, Li Y-H, et al. Urine High-Sensitivity Troponin I Predict Incident Cardiovascular Events in Patients with Diabetes Mellitus. J Clin Med. 2020;9(12):3917. doi: https://doi.org/10.3390/jcm9123917
  56. Potkonjak AM, Rudman SS, Gabaj NN, et al. Urinary troponin concentration as a marker of cardiac damage in pregnancies complicated with preeclampsia. Med Hypotheses. 2020;144:110252. doi: https://doi.org/10.1016/j.mehy.2020.110252
  57. Muslimovic A, Fridén V, Tenstad O, et al. The Liver and Kidneys mediate clearance of cardiac troponin in the rat. Sci Rep. 2020;10(1):6791. doi: https://doi.org/10.1038/s41598-020-63744-8
  58. Rahman S, Islam S, Haque T, et al. Association between serum liver enzymes and hypertension: a cross-sectional study in Bangladeshi adults. BMC Cardiovasc Disord. 2020;20(1):128. doi: https://doi.org/10.1186/s12872-020-01411-6
  59. Gore MO, Seliger SL, Defilippi CR, et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63(14):1441–1448. doi: https://doi.org/10.1016/j.jacc.2013.12.032
  60. Jeremias A, Gibson CM. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med. 2005;142(9):786–791. doi: https://doi.org/10.7326/0003-4819-142-9-200505030-00015
  61. Chaulin AM, Duplyakova PD, Bikbaeva GR, et al. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: A pilot study. Russian Journal of Cardiology. 2020;25(12):3814. doi: https://doi.org/10.15829/1560-4071-2020-3814
  62. Chaulin AM, Karslyan LS, Bazyuk EV, et al. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia. 2019;59(11):66–75. doi: https://doi.org/10.18087/cardio.2019.11.n414
  63. Chaulin AM, Duplyakov DV. Increased natriuretic peptides not associated with heart failure. Russian Journal of Cardiology. 2020;25:4140. doi: https://doi.org/10.15829/1560-4071-2020-4140
  64. Joharimoghadam A, Tajdini M, Bozorgi A. Salivary B-type natriuretic peptide: A new method for heart failure diagnosis and follow-up. Kardiol Pol. 2017;75(1):71–77. doi: https://doi.org/10.5603/KP.a2016.0097

Supplementary files

There are no supplementary files to display.


Copyright (c) 2022 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies