NANOPARTICLES AS DRUG DELIVERY SYSTEM FOR ANTITUBERCULOUS DRUGS

Cover Page

Abstract


The increase of tuberculosis incidence in last decade stimulated elaboration of both new antituberculous drugs and also searches of optimizing delivery systems for existing drugs. It is determined by their side effects and low bioavailability of effective first line  drug rifampicin. Various nanosystems for transport of antituberculous drugs are considered on the basis of various polymers, liposomes, lipid nanoparticles, nanoemulsios, nanosuspensions, dendrimers, cyclodextrines. Influence of drug incorporation into nanoparticles, most often for rifampicin, on pharmacokinetics and efficiency in tuberculosis models is discussed. The most of works are devoted to polymer nanoparticles for oral administration where increased circulation time and efficiency were shown. The best results were observed after drug inclusion into solid lipid nanoparticles. The liposomes formulations were investigated mostly for inhalation and injection administrations. Positive results were also observed. Authors underline the viability of incorporation of antituberculous drugs into phospholipid nanoparticles that may increase intestinal absorption and bioavailability. It is confirmed by authors’ own data that showed increase of rifampicin efficiency after their incorporation into such nanoparticles.

 


About the authors

M. A. Sanzhakov

Institute of Biomedical Chemistry, RAMS, Moscow, Russian Federation

Author for correspondence.
Email: iamaks@rambler.ru

Russian Federation research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (495) 708-38-07

O. M. Ipatova

Institute of Biomedical Chemistry, RAMS, Moscow, Russian Federation

Email: ipatova@ibmc.msk.ru

Russian Federation PhD, Head of Department of Nanomedicines, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (499) 246-40-08

T. I. Torkhovskaya

Institute of Biomedical Chemistry, RAMS, Moscow, Russian Federation

Email: torti@mail.ru

Russian Federation PhD, leading research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (499) 248-40-08, (499) 246-43-56

V. N. Prozorovskii

Institute of Biomedical Chemistry, RAMS, Moscow, Russian Federation

Email: vladimir.prozorovskiy@ibmc.msk.ru

Russian Federation PhD, chief research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (495) 708-38-07

E. G. Tikhonova

Institute of Biomedical Chemistry, RAMS, Moscow, Russian Federation

Email: elena.tikhonova@ibmc.msk.ru

Russian Federation MD, leading research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (499) 246-36-31

O. S. Druzhilovskaya

Institute of Biomedical Chemistry, RAMS, Moscow, Russian Federation

Email: strekalova.oksana@ibmc.msk.ru

Russian Federation MD, research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (499) 246-36-31

N. V. Medvedeva

Institute of Biomedical Chemistry, RAMS, Moscow, Russian Federation

Email: nmedvedeva@ibmc.msk.ru

Russian Federation MD, leading research scientist of the Laboratory of Phospholipid Nanomedicines and Transport Systems, Institute of Biomedical Chemistry of RAMS. Address: 119121, Moscow, Pogodinskaya Street, 10; tel.: (495) 708-38-07

References

  1. Doane T.L., Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 2012; 41 (7): 2885–2911.
  2. Dube D., Agrawal G.P., Vyas S.P. Tuberculosis: from molecular pathogenesis to effective drug carrier design. Drug Discov. Today. 2012; 17 (13–14): 760–773.
  3. Available at: http://altermed.com.ua/comment_6359.html?id_cot=201&id_kniga=201
  4. du Toit L.C., Pillay V., Danckwerts M.P. Tuberculosis chemotherapy: current drug delivery approaches. Respir. Res. 2006; 7: 118.
  5. Kaur D., Guerin M.E., Škovierová H., Brennan P.J.,.Jackson M. Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv. Appl. Microbiol. 2009; 69: 23–78.
  6. Colijn C., Cohen T., Ganesh A., Murray M. Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy. PLoS One. 2011; 6(3): 18327.
  7. Agrawal S., Singh I., Kaur K.J., Bhade S.R., Kaul C.L., Panchagnula R. . Bioequivalence assessment of rifampicin, isoniazid and pyrazinamide in a fixed dose combination of rifampicin, isoniazid, pyrazinamide and ethambutol vs. separate formulations. Int. J. Clin. Pharmacol. Ther. 2002; 40 (10): 474–481.
  8. Bhandari R., Kaur I.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int .J. Pharm. 2013; 441: 202–212.
  9. Sosnik A., Carcaboso A.M., Glisoni R.J., Moretton M.A., Chiappetta D.A. . New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev. 2010; 62 (4–5): 547–559.
  10. Tomioka H., Namba K. Development of antituberculous drugs: current status and future prospects. Kekkaku. 2006; 81 (12): 753–774.
  11. Banyal S., Malik P., Tuli H.S., Mukherjee T.K. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr. Opin. Pulm .Med. 2013; [Epub ahead of print].
  12. Shegokar R., Al Shaal L., Mitri K. Present status of nanoparticle research for treatment of tuberculosis. J. Pharm. Pharmaceut. Sci. 2011; 14 (1): 100–116.
  13. Wasserman M., Beltrán R.M., Quintana F.O., Mendoza P.M, Orozco L.C., Rodriguez G. A simple technique for entrapping rifampicin and isoniazid into liposomes. Tubercle. 1986; 67 (2): 83–90.
  14. Minina A.S., Sorokoumova G.M., Selisheva A.A., Malikova N.M., Kalashnikova T.Yu., Shvets V.I. The incorporation of rifampicin into multilayer and monolayer vesicles. Biofizika = Biophysics. 2004; 49 (4): 674–679.
  15. Gürsoy A., Kut E., Ozkirimli S. Co-encapsulation of isoniazid and rifampicin in liposomes and characterization of liposomes by derivative spectroscopy. Int. J. Pharm. 2004; 271 (1–2): 115–123.
  16. Changsan N., Chan H.K., Separovic F., Srichana T. Physicochemical characterization and stability of rifampicin liposome powder formulations for inhalation. J. Pharm. Sci. 2009; 98 (2): 628–369.
  17. Zaru M., Sinico C., De Logu A., Caddeo C., Lai F., Manca M.L., Fadda A.M. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation. J. Liposome Res. 2009; 19 (1): 68–76.
  18. Chimote G., Banerjee R. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. J. Biomed. Mater. Res. A. 2009; 89 (2): 281–292.
  19. Chimote G, Banerjee R. Evaluation of antitubercular drug insertion into preformed dipalmitoyl-phosphatidylcholine monolayers. Colloids Surf. B. Biointerfaces. 2008; 62 (2): 258–264.
  20. Changsan N., Nilkaeo A., Pungrassami P., Srichana T. Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Мycobacterium bovis in alveolar macrophages. J. Drug Target. 2009; 17 (10): 751–762.
  21. Shu J.Y., Quan X.Y., Shu Y., Guang Y.P, Liu Y.C. Preparation, characterization, and pulmonary delivery of rifapentine liposomes modified by lauric diethanolamide. Yao Xue Xue Bao. 2006; 41 (8): 761–764.
  22. Pasquardini L., Lunelli L., Vanzetti L., Anderle M., Pederzolli C. Immobilization of cationic rifampicin-loaded liposomes on polystyrene for drug-delivery. Colloids Surf. B. Biointerfaces. 2008; 62 (2): 265–272.
  23. Barbassa L., Mamizuka E.M., Carmona-Ribeiro A.M. Supramolecular assemblies of rifampicin and cationic bilayers: preparation and micobactericidal activity. BMC Biotechnol. 2011; 11: 40.
  24. Roesler J., Hockertz S., Vogt B., Lohmann-Matthes M.L. Staphylococci surviving intracellularly in phagocytes from patients suffering from chronic granulomatous disease are killed in vitro by antibiotics encapsulated in liposomes. J. Clin. Invest. 1991; 88 (4): 1224–1229.
  25. Pinheiro M., Lúcio M., Lima J.L., Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (London). 2011; 6 (8): 1413–1428.
  26. Vyas S.P., Kannan M.E, Jain S. Mishra V., Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm. 2004; 269 (1): 37–49.
  27. Pandey R., Sharma S., Khuller G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinburgh). 2005; 85 (5–6): 415–420.
  28. Nimje N., Agarwal A., Saraogi G.K., Lariya N., Rai G., Agrawal H., Agrawal G.P. Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J. Drug. Target. 2009; 17: 777–787.
  29. Pandey R., Khuller G.K. Nanotechnology based drug delivery system(s) for the management of tuberculosis. Indian J. Exp. Biol. 2006; 44: 357–366.
  30. de Faria T.J., Roman M., de Souza N.M., De Vecchi R., de Assis J.V., dos Santos A.L., Bechtold I.H, Winter N., Soares M.J., Silva L.P., De Almeida M.V, Báfica A. An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrob. Agents Chemother. 2012; 56 (5): 2259–2567.
  31. Anisimova Y.V., Gelperina S.E., Peloquin C.A, Heifets I.B. Nanoparticles as antituberculosis drugs carriers: effect on activity against M. tuberculosis in human monocyte-derived macrophages. J. Nanoparticle Res. 2000; 2: 165–171.
  32. Jiang Z., Hao J., You Y. , Gu Q., Cao W., Deng X. Biodegradable thermogelling hydrogel of P(CL-GL)-PEG-P(CL-GL) triblock copolymer: degradation and drug release. J. Pharmaceut. Sci. 2009; 98: 2603–2610.
  33. Silva M., Ferreira E.I., Leite C.Q.F., Sato D.N. Preparation of polymeric micelles for use as carriers of tuberculostatic drugs. Trop. J. Pharm. Res. 2007; 6 (4): 815–824.
  34. D'Addio S.M., Baldassano S., Shi L. Adamson D.H., Bruzek M., Anthony J.E., Laskin D.L., Sinko P.J., Prud'homme R.K. Optimization of cell receptor-specific targeting through multivalent surface decoration of polymeric nanocarriers. J. Control Release. 2013; [Epub ahead of print].
  35. Kumar P.V., Asthana A., Dutta T., Jain N.K. Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers. J. Drug Target. 2006; 14: 546–556.
  36. Patil J.S., Suresh S. Physicochemical characterization, in vitro release and permeation studies of rifampicin-cyclodextrin inclusion complexes. Indian J. Pharm. Sci. 2009; 71 (6): 638–643.
  37. Saikia N., Rajkhowa S., Deka R.C. Density functional and molecular docking studies towards investigating the role of single-wall carbon nanotubes for loading and delivery of pyrazinamide antitubercular drug. J. Comput. Aided Mol. 2013; [Epub ahead of print].
  38. Mehta S.K., Jindal N., Kaur G. Quantitative investigation, stability and in vitro release studies of anti-tuberculosis drugs in triton niosomes. Colloids Surf. B. Biointerfaces. 2011; 87 (1): 173–179.
  39. Ahmed M., Ramadan W., Rambhu D., Shakeel F. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie. 2008; 63: 806–811.
  40. Mehta S.K., Kaur G., Bhasin K.K Tween-embedded microemulsions-physicochemical and spectroscopic analysis for antitubercular drugs. AAPS Pharm. Sci. Tech. 2010; 11: 143–153.
  41. Sarfaraz M.D., Hiremath D., Chowdary K.P.R. Formulation and characterization of rifampicin microcapsules. Indian J. Pharm. Sci. 2010; 72 (1): 101–105.
  42. Hiremath P.S., Saha R.N. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations. Int. J. Pharm. 2008; 362 (1–2): 118–125.
  43. Pandey R., Sharma S., Khuller G.K. Chemotherapeutic efficacy of nanoparticle encapsulated antitubercular drugs. Drug Deliv. 2006; 13 (4): 287–294.
  44. Dutt M., Khuller G.K. Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in Poly (DL-lactide-co-glycolide) microparticles. J. Antimicrob. Chemother., 2001; 47 (6): 829–835.
  45. Johnson C.M., Pandey R., Sharma S. , Khuller G. K., Basaraba R.J., Orme I.M., Lenaerts A.J. Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2005; 49 (10): 4335–4338.
  46. Sharma A., Sharma S., Khuller G.K. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother. 2004; 54 (4): 761–766.
  47. Kumar G, Sharma S, Shafiq N., Pandhi P., Khuller G.K., Malhotra S., Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv. 2011; 18 (1): 65–73.
  48. Kisich K.O, Gelperina S.E, Higgins M.P , Wilson S, Shipulo E, Oganesyan E, Heifets L. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm. 2007; 345 (1–2): 154–162.
  49. Jia L., Wong H., Cerna C., Weitman S.D. Effect of nanonization on absorption of 301029: ex vivo and in vivo pharmacokinetic correlations. Pharm. Res. 2002; 19: 1091–1096.
  50. Ipatova O.M, Prozorovskiy V.N., Medvedeva N.V., Shironin A.V., Strekalova O.S., Ivanova N.D., Torkhovskaya T.I., Archakov A.I. Phospholipid nanoparticles as carriers for drug delivery. Materials of European Congress for Drug Discovery (MipTec). Basel. 2010. Abstr. 80.
  51. Ipatova O.M., Medvedeva N.V., Prozorovskii V.N., Sanzhakov M.A., Tikhonova E.G., Druzhilovskaya O.S., Minaev S.A., Kyurkchan P.A. Protivotuberkuleznaya kompozitsiya i sposob ee polucheniya [Antituberculous compounds and method of its preparation]. Patent na izobretenie № 2472512, Zayavka № 2011149543/15 [Patent for invention № 2472512, Application № 2011149543/15]. Мoscow, 2011.
  52. Zaru M., Manca M.L., Fadda A.M., Antimisiaris S.G. Chitosan-coated liposomes for delivery to lungs by nebulisation. Colloids Surf. B. Biointerfaces. 2009; 71 (1): 88–95.
  53. Chono S., Tanino T., Seki T., Morimoto K. Uptake of liposomes by rat alveolar macrophages: influence of size and surface mannose modification. J. Pharm. Pharmacol. 2007; 59 (1): 75–80.
  54. Pandey R., Sharma A., Zahoor A., Sharma S., Khuller G.K., Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother. 2003; 52: 981–986.
  55. Ohashi K., Kabasawa T., Ozeki T., Okada H. One-step preparation of rifampicin/ poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J. Control Release. 2009; 135 (1): 19–24.
  56. Ahmad Z., Sharma S., Khuller G.K. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int. J. Antimicrob. Agents. 2005; 26 (4): 298–303.
  57. Pandey R., Khuller G.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinburgh). 2005; 85 (4): 227–234.
  58. Orozco L.C., Quintana F.O., Beltran R.M., Moreno I., Wasserman M., Rodriguez G. The use of rifampin and isoniazid entrapped in liposomes for the treatment of murine tuberculosis. Tubercle. 1986; 67: 91–97.
  59. Saito H., Tomioka H. Therapeutic efficacy of liposomal entrapped rifampin against Mycobacterium avium complex infection induced in mice. Antimicrob. Agents Chemother. 1989; 33: 429–433.
  60. Deol P., Khuller G.K. Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochem. Biophys. Acta. 1997; 1334 (2–3): 161–172.
  61. Labana S., Pandey R., Sharma S., Khuller G.K. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int. J. Antimicrob. Agents. 2002; 20 (4): 301–304.
  62. El-Ridy M.S., Mostafa D.M., Shehab A., Nasr E.A, Abd El-Alim S. Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int. J. Pharm. 2007; 330: 82–88.
  63. Gaspar M.M., Cruz A., Penha A.F., Reymao J., Sousa A.C, Eleuterio C.V., Domingues S.A., Fraga A.G., Filho A.L, Cruz M.E., Pedrosa J. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int. J. Antimicr. Agents. 2008; 31: 37–45.
  64. Adams L.B., Sinha I., Franzblau S.G., Krahenbuhl J.L., Mehta R.T. Effective treatment of murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob. Agents Chemother. 1999; 43 (7): 1638–1643.
  65. Klemens S.P., Cynamon M.H., Swenson C.E., Ginsberg R.S. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium infection. Antimicrob. Agents Chemother. 1990; 34(6): 967–970.
  66. Gangadharam P.R., Ashtekar DA, Ghori N., Goldstein J.A., Debs R.J., Düzgünes N. Chemotherapeutic potential of liposome encapsulated streptomycin against experimental Myc.avium infections. J. Antimicr. Chemother. 1991; 28 (3):425–435.
  67. Merisko-Liversidge E., Liversidge G.G. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 2011; 63 (6): 427–440.
  68. Sanzhakov M.A., Medvedeva N.V., Prozorovskii V.N., Ipatova O.M. Fosfolipidnaya nanosistema transporta dlya preparatov rifamitsinovogo ryada [Phospholipid drug delivery nanosystem for rifamycins]. Mat-ly Moskovskoi mezhdunar. nauch.-prakt. konf. «Farmatsevticheskie i biomeditsinskie tekhnologii» [Proceedings of the Moscow International scientific-practical conference "Pharmaceutical and biomedical technology."]. Мoscow, 2012. 256–257 p.

Statistics

Views

Abstract - 314

PDF (Russian) - 689

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies