Methotrexate Safety in Psoriasis: An Overview

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Methotrexate is a highly efficacious treatment for psoriasis, but the use of methotrexate may be limited by concerns regarding its adverse reactions. On average, 28.3 % of patients with psoriasis treated by methotrexate develop adverse reactions. The occurrence of adverse drug reactions in some cases leads to the therapy discontinuation, which may be accompanied by psoriasis exacerbation. The purpose of this article is to provide an extensive review of the methotrexate efficacy, safety and tolerability as well as provide a comprehensive understanding of methotrexate pharmacokinetics and pharmacodynamics, methotrexate side effects pathogenesis, approaches to methotrexate safety monitoring, situations in which it is necessary to be vigilant when prescribing methotexate. We also outline current data concerning methotrexate molecular mechanism of action, including new data on its anti-inflammatory activity, that allow us to explain the pathogenesis of a number of adverse drug reactions, as well as discuss possible ways of predicting the methotrexate toxicity, especially focusing on recent advances in the field of pharmacogenetics of methotrexate-induced toxicity and personalized approach to psoriasis treatment.

Full Text

Restricted Access

About the authors

Anastasiia V. Asoskova

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
ORCID iD: 0000-0002-2228-8442
SPIN-code: 5530-9490

PhD student

Russian Federation, 2/1 b.1 Barrikadnaya str., 125993, Moscow

Dmitry A. Sychev

Russian Medical Academy of Continuous Professional Education

ORCID iD: 0000-0002-4496-3680
SPIN-code: 4525-7556

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, 2/1 b.1 Barrikadnaya str., 125993, Moscow

Alexey A. Kubanov

State Scientific Centre of Dermatovenereology and Cosmetology

ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990

MD, PhD, Professor , Corresponding Member of the RAS

Russian Federation, 3, buil. 6, st. Korolenko, Moscow, 107076


  1. Российское общество дерматовенерологов и косметологов. Федеральные клинические рекомендации. Дерматовенерология 2015: Болезни кожи. Инфекции, передаваемые половым путем. — 5-е изд., перераб. и доп. — М.: Деловой экспресс, 2016. — 768 с. [Russian society dermatovenerologists and cosmetologists. Federal clinical guidelines. Dermatovenereology 2015: Skin diseases. Sexually transmitted infections. 5th ed., Rev. and add. Moscow. Business Express, 2016; 768 p. (In Russ)]
  2. Parisi R, Iskandar I, Kontopantelis E, et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020:1590. doi:
  3. Global report on psoriasis [WHO Library]. I. World Health Organization. 2016. Available at:;sequence=1 (аccessed: 25.02.2021).
  4. Рубрикатор клинических рекомендаций. [Rubrikator klinicheskih rekomendacij.] Available at:!/schema/866#doc_g (аccessed: 25.02.2021).
  5. Lebwohl MA. Clinician›s paradigm in the treatment of psoriasis. J Am Acad Dermatol. 2005;53(1):59–S69. doi:
  6. Чикин В.В., Знаменская Л.Ф., Минеева А.А. Патогенетические аспекты лечения больных псориазом // Вестник дерматологии и венерологии. — 2014. — №. 5. — С. 86–90. [Chikin VV, Znamenskaya LF, Mineeva AA. Pathogenic aspects of treatment of psoriatic patients. Vestnik dermatologii i venerologii. 2014;5:86–90. (In Russ).]
  7. Edmudson W. Treatment of Psoriasis with Folic Acid Antagonists. Arch Dermatol. 1958;78(2):200. doi:
  8. Weinstein G. Methotrexate for psoriasis. A new therapeutic schedule. Arch Dermatol. 1971;103(1):33–38. doi:
  9. Black R, O’Brien W, Van Scott E, et al. Methotrexate Therapy in Psoriatic Arthritis. J AmMed Assoc. 1964;189(10). doi:
  10. Zachariae H, Zachariae E. Methotrexate treatment of psoriatic arthritis. Acta Derm Venereol. 1987;67:270–273.
  11. Kragballe K, Zachariae E, Zachariae H. Methotrexate in psoriatic arthritis: a retrospective study. Acta Derm Venereol. 1983;63:165–167.
  12. Nyfors A. Benefits and adverse drug experiences during longterm methotrexate treatment of 248 psoriatics. Danish Medical Bulletin. 1978;25:208–11.
  13. Gottlieb A, Langley R, Strober B, et al. A randomized, double‐blind, placebo‐controlled study to evaluate the addition of methotrexate to etanercept in patients with moderate to severe plaque psoriasis. Br J Dermatol. 2012;167(3):649–657. doi:
  14. Yélamos O, Puig L. Systemic methotrexate for the treatment of psoriasis. Expert Rev Clin Immunol. 2015;11(5):553–563. doi:
  15. Shen S, O’Brien T, Yap LM, et al. The use of methotrexate in dermatology: a review. Australas J Dermatol. 2012;53(1):1–18. doi:
  16. Menting S, Dekker P, Limpens J, et al. Methotrexate Dosing Regimen for Plaque-type Psoriasis: A Systematic Review of the Use of Test-dose, Start-dose, Dosing Scheme, Dose Adjustments, Maximum Dose and Folic Acid Supplementation. Acta Derm Venereol. 2016;96(1):23–28. doi:
  17. Schiff M, Jaffe J, Freundlich B. Head-to-head, randomised, crossover study of oral versus subcutaneous methotrexate in patients with rheumatoid arthritis: drug-exposure limitations of oral methotrexate at doses ≥15 mg may be overcome with subcutaneous administration. Ann Rheum Dis. 2014;73(8):1549–1551. doi:
  18. Бакулев А.Л. Метотрексат: к вопросу об эффективности и безопасности применения препарата у больных псориазом // Вестник дерматологии и венерологии. — 2017. — № 1. — С. 38–45. [Bakulev AL. Methotrexate: Revisited efficiency and safety of drug administration in psoriasis patients. Vestnik dermatologi i ivenerologii. 2017;1:38–45 (In Russ.)]
  19. Paxton JW. Protein binding of methotrexate in sera from normal human beings: effect of drug concentration, pH, temperature, and storage. Journal of Pharmacological Methods. 1981;5:203–213. doi:
  20. Tracy T, Worster T, Bradley J, et al. Methotrexate disposition following concomitant administration of ketoprofen, piroxicam and flurbiprofen in patients with rheumatoid arthritis. Br J Clin Pharmacol. 1994;37(5):453–456. doi:
  21. Yélamos O, Català A, Vilarrasa E, et al. Acute Severe Methotrexate Toxicity in Patients with Psoriasis: A Case Series and Discussion. Dermatology. 2014;229(4):306–309. doi:
  22. Whetstine JR, Gifford AJ, Witt T, et al. Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clin Cancer Res. 2001;7:3416–3422.
  23. Inoue K, Yuasa H. Molecular Basis for Pharmacokinetics and Pharmacodynamics of Methotrexate in Rheumatoid Arthritis Therapy. Drug Metab Pharmacokinet. 2014;29(1):12–19. doi:
  24. Ando Y, Shimada H, Matsumoto N, et al. Role of Methotrexate Polyglutamation and Reduced Folate Carrier 1 (RFC1) Gene Polymorphisms in Clinical Assessment Indexes. Drug Metab Pharmacokinet. 2013;28(5):442–445. doi:
  25. Kremer J, Galivan J, Streckfuss A, Kamen B. Methotrexate metabolism analysis in blood and liver of rheumatoid arthritis patients: Association with hepatic folate deficiency and formation of polyglutamates. Arthritis Rheum. 1986;29(7):832–835. doi:
  26. Hider S, Bruce I, Thomson W. The pharmacogenetics of methotrexate. Rheumatology. 2007;46(10):1520–1524. doi:
  27. Brown P, Pratt A, Isaacs J. Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol. 2016;12(12):731–742. doi:
  28. Murakami T, Mori N. Involvement of Multiple Transporters-mediated Transports in Mizoribine and Methotrexate Pharmacokinetics. Pharmaceuticals. 2012;5(8):802–836. doi:
  29. Van Wert A, Sweet D. Impaired Clearance of Methotrexate in Organic Anion Transporter 3 (Slc22a8) Knockout Mice: A Gender Specific Impact of Reduced Folates. Pharm Res. 2007;25(2):453–462. doi:
  30. Chan E, Cronstein B. Methotrexate — how does it really work? Nat Rev Rheumatol. 2010;6(3):175–178. doi:
  31. Fairbanks L, RüCkemann K, Qiu Y, et al. Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: a metabolic basis for efficacy in rheumatoid arthritis? Biochem J. 1999;342(1):143–152. doi:
  32. Genestier L, Paillot R, Fournel S, Ferraro C, et al. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest. 1998;102(2):322–328. doi:
  33. Prey S, Paul C. Effect of folic or folinic acid supplementation on methotrexate-associated safety and efficacy in inflammatory disease: a systematic review. Br J Dermatol. 2009;160(3):622–628. doi:
  34. Montesinos MC, Desai A, Cronstein B. Suppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollateinduced peritonitis. Arthritis Res. 2006;8(2):R53. doi:
  35. Montesinos M, Yap J, Desai A, Posadas I, et al. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: Evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum. 2000;43(3):656–663. doi:<656::aid-anr23>;2-h
  36. Nesher G, Mates M, Zevin S. Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum. 2003;48(2):571–572. doi:
  37. Benito-Garcia E, Heller JE, Chibnik LB, et al. Dietary caffeine intake does not affect methotrexate efficacy in patients with rheumatoid arthritis. J Rheumatol. 2006:33(7):1275–1281.
  38. Cronstein B, Naime D, Ostad E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest. 1993;92(6):2675–2682. doi:
  39. Meephansan J, Ruchusatsawat K, Sindhupak W, et al. Effect of methotrexate on serum levels of IL-22 in patients with psoriasis. Eur J Dermatol. 2011;21(4):501–504. doi:
  40. El Eishi N, Hegazy R, AbouZeid O, Shaker O. Peroxisome Proliferator Receptor (PPAR) β/δ in psoriatic patients before and after two conventional therapeutic modalities: methotrexate and PUVA. Eur J Dermatol. 2011;21(5):691–695. doi:
  41. Neurath MF, Hildner K, Becker C, et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin Exp Immunol. 1999;115(1):42–55. doi:
  42. Thomas S, Fisher K, Snowden J, Danson S, Brown S, Zeidler M. Methotrexate Is a JAK/STAT Pathway Inhibitor. PLoS One. 2015;10(7):e0130078. doi:
  43. Насонов Е.Л., Лила А.М. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы // Научно-практическая ревматология. — 2019. — Т. 57. — № 1. [Nasonov EL, Lila AM. Janus kinase inhibitors in immune-inflammatory rheumatic diseases: new opportunities and prospects. Nauchno-prakticheskaja revmatologija. 2019;58. (In Russ.)]
  44. Thomas S, Fisher K, Brown S, Snowden J, Danson S, Zeidler M. Methotrexate Is a Suppressor of JAK/STAT Pathway Activation Which Inhibits JAK2V617F Induced Signalling. Blood. 2014;124(21):4577–4577. doi:
  45. Herman S, Zurgil N, Deutsch M. Low dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflamm Res. 2005;54(7):273–280. doi:
  46. Spurlock C, Gass H, Bryant C, et al. Methotrexate-mediated inhibition of nuclear factor κB activation by distinct pathways in T cells and fibroblast-like synoviocytes. Rheumatology. 2014;54(1):178–187. doi:
  47. West J, Ogston S, Foerster J. Safety and Efficacy of Methotrexate in Psoriasis: A Meta-Analysis of Published Trials. PLoS One. 2016;11(5):e0153740. doi:
  48. Pathirana D, Ormerod AD, Saiag P, et al. European S3-guidelines on the systemic treatment of psoriasis vulgaris. J Eur Acad Dermatol Venereol. 2009;23(s2):1–70. doi:
  49. Levin AA, Gottlieb AB, Au SC. A comparison of psoriasis drug failure rates and reasons for discontinuation in biologics vs conventional systemic therapies. J Drugs Dermatol. 2014;13(7):848–53.
  50. Tsukada T, Nakano T, Miyata T, Sasaki S. Life-Threatening Gastrointestinal Mucosal Necrosis during Methotrexate Treatment for Rheumatoid Arthritis. Case Rep Gastroenterol. 2013;7(3):470–475. doi:
  51. Yazici Y. Long term safety of methotrexate in routine clinical care: discontinuation is unusual and rarely the result of laboratory abnormalities. Ann Rheum Dis. 2005;64(2):207–211. doi:
  52. Van Ede A, Laan R, Blom H, et al. Methotrexate in rheumatoid arthritis: An updatewith focus on mechanisms involved in toxicity. Semin Arthritis Rheum. 1998;27(5):277–292. doi:
  53. Lima A, Bernardes M, Azevedo R, et al. SLC19A1, SLC46A1 and SLCO1B1 Polymorphisms as Predictors of Methotrexate-Related Toxicity in Portuguese Rheumatoid Arthritis Patients. Toxicol Sci. 2014;142(1):196–209. doi:
  54. Bedoui Y, Guillot X, Sélambarom J, et al. Methotrexate an Old Drug with New Tricks. Int J Mol Sci. 2019;20(20):5023. doi:
  55. Conway R, Carey J. Risk of liver disease in methotrexate treated patients. World J Hepatol. 2017;9(26):1092. doi:
  56. Themido R, Loureiro M, Pecegueiro M, et al. Methotrexate hepatotoxicity in psoriatic patients submitted to long-term therapy. Acta Derm Venereol (Stockh).1992;72:361–364.
  57. Saporito F, Menter M. Methotrexate and psoriasis in the era of new biologic agents. J Am Acad Dermatol. 2004;50(2):301–309. doi:
  58. Chan E, Montesinos M, Fernandez P, et al. Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol. 2006;148(8):1144–1155. doi:
  59. Ortega-Alonso A, Andrade R. Chronic liver injury induced by drugs and toxins. J Dig Dis. 2018;19(9):514–521. doi:
  60. Vardi N, Parlakpinar H, Cetin A, Erdogan A, Cetin Ozturk I. Protective Effect of β-Carotene on Methotrexate–Induced Oxidative Liver Damage. Toxicol Pathol. 2010;38(4):592–597. doi:
  61. Hassan W. Methotrexate and liver toxicity: role of surveillance liver biopsy. Conflict between guidelines for rheumatologists and dermatologists. Ann Rheum Dis. 1996;55(5):273–275. doi:
  62. Langman G, Hall P, Todd G. Role of non-alcoholic steatohepatitis in methotrexate-induced liver injury. J Gastroenterol Hepatol. 2001; 16(12):1395–1401. doi:
  63. Campalani E, Arenas M, Marinaki A, et al. Polymorphisms in Folate, Pyrimidine, and Purine Metabolism Are Associated with Efficacy and Toxicity of Methotrexate in Psoriasis. J Invest Dermatol. 2007;127(8):1860–1867. doi:
  64. Каневская М.З., Гурская С.В. Метотрексат в лечении ревматических заболеваний // Современная ревматология. — 2013. — № 4. [Kanevskaja MZ, Gurskaja SV. Methotrexate in the treatment of rheumatic disease. Sovremennaja revmatologija. 2013;4 (In Russ.)]
  65. Menter A, Cordoro K.M, Davis D.M.R, et al. Joint American Academy of Dermatology-National Psoriasis Foundation guidelines of care for the management and treatment of psoriasis in pediatric patients. J Am Acad Dermatol. 2020;82(3):574.
  66. Negrei C, Boda D. The Role of Methotrexate in Psoriatic Therapy in the Age of Biologic and Biosimilar Medication: Therapeutic Benefits versus Toxicology Emergencies. An Interdisciplinary Approach to Psoriasis. 2017. doi:
  67. Chalmers R, Kirby B, Smith A, et al. Replacement of routine liver biopsy by procollagen III aminopeptide for monitoring patients with psoriasis receiving long-term methotrexate: a multicentre audit and health economic analysis. Br J Dermatol. 2005;152(3):444–450. doi:
  68. Thomas J, Aithal G. Monitoring Liver Function during Methotrexate Therapy for Psoriasis. Am J Clin Dermatol. 2005;6(6):357–363. doi:
  69. Dooren-Greebe R, Kuijpers A, Mulder J, et al. Methotrexate revisited: effects of long-term treatment in psoriasis. Br J Dermatol. 1994;130(2):204–210. doi:
  70. Paul M, Hemshekhar M, Thushara R, et al. Methotrexate Promotes Platelet Apoptosis via JNK-Mediated Mitochondrial Damage: Alleviation by N-Acetylcysteine and N-Acetylcysteine Amide. PLoS One. 2015;10(6):e0127558. doi:
  71. Singh A, Choudhary R, Chhabra N, et al. Pancytopenia Following Single Dose Methotrexate in Psoriasis: A Rare And Potentially Lethal Manifestation. Curr Drug Saf. 2020;15. doi:
  72. Olsen E. The pharmacology of methotrexate. J Am Acad Dermatol. 1991;25(2):306–318. doi:
  73. Kim Y, Song M, Ryu J. Inflammation in methotrexate-induced pulmonary toxicity occurs via the p38 MAPK pathway. Toxicology. 2009;256(3):183–190. doi:
  74. Lateef O, Shakoor N, Balk R. Methotrexate pulmonary toxicity. Expert Opin Drug Saf. 2005;4(4):723–730. doi:
  75. Ohbayashi M, Suzuki M, Yashiro Y, et al. Induction of pulmonary fibrosis by methotrexate treatment in mice lung in vivo and in vitro. J Toxicol Sci. 2010;35(5):653–661. doi:
  76. Grönroos M, Chen M, Jahnukainen T, Capitanio A, Aizman R, Celsi G. Methotrexate induces cell swelling and necrosis in renal tubular cells. Pediatr Blood Cancer. 2006;46(5):624–629. doi:
  77. Abelson H, Fosburg M, Beardsley G, et al. Methotrexate-induced renal impairment: clinical studies and rescue from systemic toxicity with high-dose leucovorin and thymidine. J Clin Oncol. 1983;1(3):208–216. doi:
  78. Li X, Abe E, Yamakawa Y. Effect of Administration Duration of Low Dose Methotrexate on Development of Acute Kidney Injury in Rats. J Kidney. 2016;2(3). doi:
  79. Cronstein B. The mechanism of action of methotrexate. Rheum Dis Clin North Am. 1997;23(4):739–755. doi:
  80. Bernatsky S, Hudson M, Suissa S. Anti-rheumatic drug use and risk of serious infections in rheumatoid arthritis. Rheumatology. 2007;46(7):1157–1160. doi:
  81. Lloyd M. The effects of methotrexate on pregnancy, fertility and lactation. QJM. 1999;92(10):551–563. doi:
  82. Buckley L, Bullaboy C, Leichtman L, Marquez M. Multiple congenital anomalies associated with weekly low-dose methotrexate treatment of the mother. Arthritis Rheum. 1997;40(5):971–973. doi:
  83. Stern R, Laird N. The carcinogenic risk of treatments for severe psoriasis. Cancer. 1994;73(11):2759–2764. doi:<2759::aid-cncr2820731118>;2-c
  84. Kamel O, van de Rijn M, LeBrun D, et al. Lymphoid neoplasms in patients with rheumatoid arthritis and dermatomyositis: Frequency of Epstein-Barr virus and other features associated with immunosuppression. Hum Pathol. 1994;25(7):638–643. doi:
  85. Kalantzis A, Marshman Z, Falconer D, et al. Oral effects of low-dose methotrexate treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(1):52–62. doi:
  86. Merrill J, Shen C, Schreibman D, et al. Adenosine A1 receptor promotion of multinucleated giant cell formation by human monocytes. A mechanism for methotrexate-induced nodulosis in rheumatoid arthritis. Arthritis Rheum. 1997;40(7):1308–1315. doi:
  87. Motegi S, Ishikawa O. Methotrexate-induced Accelerated Nodulosis in a Patient with Rheumatoid Arthritis and Scleroderma. Acta Derm Venereol. 2014;94(3):357–358. doi:
  88. Wollina U, Ständer K, Barta U. Toxicity of Methotrexate Treatment in Psoriasis and Psoriatic Arthritis — Short- and Long-Term Toxicity in 104 Patients. Clin Rheumatol. 2001;20(6):406–410. doi:
  89. Thakkar M, Engemann S, Walsh K, Sahota P. Adenosine and the homeostatic control of sleep: Effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness. Neuroscience. 2008;153(4):875–880. doi:
  90. Bernini J, Fort D, Griener J, et al. Aminophylline for methotrexate-induced neurotoxicity. Lancet. 1995;345(8949):544–547. doi:
  91. Quinn C, Griener J, Bottiglieri T, Hyland K, Farrow A, Kamen B. Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. J Clin Oncol. 1997;15(8):2800–2806. doi:
  92. Millot F, Dhondt J, Mazingue F, Mechinaud F, Ingrand P, Guilhot F. Changes of Cerebral Biopterin and Biogenic Amine Metabolism in Leukemic Children Receiving 5 g/m2 Intravenous Methotrexate. Pediatr Res. 1995;37(2):151–154. doi:
  93. Patel S. Effect of low dose weekly methotrexate on bone mineral density and bone turnover. Ann Rheum Dis. 2003;62(2):186–187. doi:
  94. May K, West S, Mcdermott M, Huffer W. The Effect of Low-Dose Methotrexate on Bone Metabolism and Histomorphometry in Rats. Arthritis Rheum. 1994;37(2):201–206. doi:
  95. Uz B. Single Low-Dose Methotrexate-Induced Fatal Pancytopenia: Case Report and Review of the Literature. Biomed J Sci Tech Res. 2019;15(5). doi:
  96. Lucas J, Ntuen E, Pearce D, et al. Methotrexate: Understanding the risk in psoriasis patients. J Dermatol Treat. 2009;20(5):311–313. doi:
  97. MacDonald A, Burden AD. Noninvasive monitoring for methotrexate hepatotoxicity. Br J Dermatol. 2005;152(3):405–408. doi:
  98. Menter A, Korman N, Elmets C, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis. J Am Acad Dermatol. 2009;61(3):451–485. doi:
  99. Saag K, Teng G, Patkar N, et al. American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum. 2008;59(6):762–784. doi:
  100. Improving compliance with oral methotrexate guidelines. The National Patient Safety Agency. London; 2007.
  101. Sutherland A, Power R, Rahman P, O’Rielly D. Pharmacogenetics and pharmacogenomics in psoriasis treatment: current challenges and future prospects. Expert Opin Drug Metab Toxicol. 2016;12(8):923–935. doi:
  102. Котловский М.Ю., Покровский А.А., Котловская О.С., и др. Ген SLCO1B1 в аспекте фармакогенетики // Сибирское медицинское обозрение. — 2015. — № 1 (91). – C. 5–15. [Kotlovskiy MY, Pokrovskiy AA, Kotlovskaya OS, et al. SLCO1B1 Gene in the aspect of pharmacogenetics. Sibirskoye meditsinskoye obozreniye. 2015;1(91):5–15. (In Russ.)]
  103. Сычев Д.А. Рекомендации по применению фармакогенетического тестирования в клинической практике // Качественная клиническая практика. — 2011. — № 1. — С. 3–10. [Sychov D.A. Rekomendatsii po primeneniyu farmakogeneticheskogo testirovaniya v klinicheskoy praktike. Kachestvennaya klinicheskaya praktika. 2011;1:3–10. (In Russ.)]
  104. Hider S. Will pharmacogenetics allow better prediction of methotrexate toxicity and efficacy in patients with RA? Ann Rheum Dis. 2003;62(6):591–591. doi:
  105. Eichelbaum M, Ingelman-Sundberg M, Evans W. Pharmacogenomics and Individualized Drug Therapy. Annu Rev Med. 2006;57(1):119–137. doi:

Supplementary files

There are no supplementary files to display.

Copyright (c) 2021 "Paediatrician" Publishers LLC

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies