Vitamin D Sufficiency and Its Relationship with Indicators of Physical Development and the State of Bone Tissue in Cadets of a Military Higher Educational Institution

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. In conditions of low insolation, which is typical for the northern regions of the Russian Federation, manifestations of low vitamin D availability often occur latently and for a long time unrecognized. This problem is especially relevant in young people, due to the failure to reach peak bone mass, which later determines the bone mineral density.

Aims — to determine the prevalence of deficiency and insufficient supply of 25(OH)D in blood serum in the spring, their impact on the indicators of physical development and bone mineral density among cadets of a military higher educational institutions.

Methods. We examined 198 cadets, studying in the first and fourth years of military higher educational institutions in St. Petersburg at the age of 17–25 years. As part of the study, a study of 25(OH)D in blood serum was performed, bone mineral density, muscle strength, anthropometric data, and body composition were additionally determined. The study was conducted in March–May 2023.

Results. The optimal content of 25(OH)D was found only in 22 (11.1%) cadets, while the most pronounced deficiency was registered in boys of fourth of study. It was established that the 25(OH)D level of first year cadets, who arrived from the southern regions of the Russian Federation (21.6 (18.1; 26.3) ng/ ml), was significantly different from the content of 25(OH)D in cadets who arrived from the middle zone (Me 18.7 (16.4; 21.4) ng/ml) (p = 0.017) and northern regions of the Russian Federation (Me 15.2 (13.6; 19.3) ng/ml) (p = 0.022). A decrease in the Z-criterion ≤ –2.0 SD was noted among cadets, mainly in the first year. It was revealed that muscle and fat mass were higher in fourth year boys, however, their muscle strength was not statistically significantly different from that of first year and muscle strength indicators did not depend on the availability of 25(OH)D. Increasing BMI was associated with higher muscle mass (p = 0.0004) and fat mass (p = 0.0006), with muscle strength (p = 0.026) and physical fitness performance (p = 0.012) among cadets with increasing BMI were significantly better compared to cadets who had an optimal BMI.

Conclusions. The results obtained indicate that cadets of a military higher educational institutions of St. Petersburg experience 25(OH)D deficiency and insufficiency, against the background of increased physical activity and prolonged stay in conditions of reduced insolation. This fact indicates the need to correct vitamin D hypovitaminosis in order to prevent osteopenic syndrome and improve physical performance.

Full Text

Restricted Access

About the authors

Evgeny V. Kryukov

Military Medical Academy named after S.M. Kirov

Email: evgeniy.md@mail.ru
ORCID iD: 0000-0002-8396-1936
SPIN-code: 3900-3441

MD, PhD, Professor, Academician of the RAS

Russian Federation, Saint Petersburg

Olga M. Lesnyak

North-Western State Medical University named after I.I. Mechnikov

Email: olga.m.lesnyak@yandex.ru
ORCID iD: 0000-0002-0143-0614
SPIN-code: 6432-4188

MD, PhD, Professor

Russian Federation, Saint Petersburg

Dmitry S. Aganov

Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: dimanerio@gmail.com
ORCID iD: 0000-0002-5082-9322
SPIN-code: 1889-1327

MD, PhD

Russian Federation, Saint Petersburg

Mikhail M. Toporkov

Military Medical Academy named after S.M. Kirov

Email: mikhtop@yandex.ru
ORCID iD: 0000-0002-7417-7509
SPIN-code: 7518-1095

MD, PhD

Russian Federation, Saint Petersburg

Dmitry V. Ovchinnikov

Military Medical Academy named after S.M. Kirov

Email: 79112998764@yandex.ru
ORCID iD: 0000-0001-8408-5301
SPIN-code: 5437-3457

MD, PhD, Associate Professor

Russian Federation, Saint Petersburg

Alexey А. Semenov

Military Medical Academy named after S.M. Kirov

Email: semfeodosia82@mail.ru
ORCID iD: 0000-0002-1977-7536
SPIN-code: 1147-3072

MD, PhD

Russian Federation, Saint Petersburg

Dmitry Yu. Anokhin

Military Medical Academy named after S.M. Kirov

Email: damixon@mail.ru
ORCID iD: 0000-0003-4499-066X
SPIN-code: 6186-5543

MD, PhD

Russian Federation, Saint Petersburg

Nikolay N. Komarov

Military Medical Academy named after S.M. Kirov

Email: nik_kom_2012@mail.ru
ORCID iD: 0000-0003-2016-8815
SPIN-code: 2478-5928
Russian Federation, Saint Petersburg

References

  1. Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020; 74(11):1498–1513. doi: https://doi.org/10.1038/s41430-020-0558-y
  2. Pereira-Santos M, Santos JYGD, Carvalho GQ, et al. Epidemiology of vitamin D insufficiency and deficiency in a population in a sunny country: Geospatial meta-analysis in Brazil. Crit Rev Food Sci Nutr. 2019;59(13):2102–2109. doi: 10.1080/10408398.2018.1437711
  3. Siddiqee MH, Bhattacharjee B, Siddiqi UR, et al. High prevalence of vitamin D deficiency among the South Asian adults: a systematic review and meta-analysis. BMC Public Health. 2021;21(1):1–18. doi: https://doi.org/10.1186/S12889-021-11888-1
  4. Коробицына Р.Д., Сорокина Т.Ю. Статус витамина D населения России репродуктивного возраста за последние 10 лет: систематический обзор // Российская Арктика. — 2022. — Т. 3. — № 18. — С. 44–55. [Korobitsyna RD, Sorokina TJu. Vitamin D status of the russian reproductive population over the past 10 years: a systematic review. Russian Arctic. 2022;3(18):44–55. (In Russ.)] doi: https://doi.org/10.24412/2658-4255-2022-3-44-55
  5. Суплотова Л.А., Авдеева В.А., Рожинская Л.Я., и др. Анализ факторов риска дефицита витамина D по результатам первого этапа российского неинтервенционного регистрового исследования // Медицинский совет. — 2021. — № 7. — С. 109–118. [Suplotova LA, Avdeeva VA, Rozhinskaya LY, et al. Analysis of risk factors for vitamin D deficiency by results of the first stage of Russian non-interventional register study. Meditsinskiy Sovet. 2021;7:109–118. (In Russ.)] doi: https://doi.org/10.21518/2079-701X-2021-7-109-118
  6. Захарова И.Н., Соловьева Е.А., Творогова Т.М., и др. Факторы, влияющие на статус витамина D у московских подростков // Медицинский совет. — 2019. — № 17. — С. 50–57. [Zakharova IN, Solov’yeva EA, Tvorogova TM, et al. Factors affecting the status of vitamin D in Moscow adolescents. Meditsinskiy Sovet. 2019;17:50–57. (In Russ.)] doi: https://doi.org/10.21518/2079-701X-2019-17-50-57
  7. Петрушкина А.А., Пигарова Е.А., Рожинская Л.Я. Эпидемиология дефицита витамина D в Российской Федерации // Остеопороз и остеопатии. — 2018. — Т. 21. — № 3. — С. 15–20. [Petrushkina AA, Pigarova EA, Rozhinskaya LYa. The prevalence of vitamin D deficiency in Russian Federation. Osteoporosis and Bone Diseases. 2018;21(3):15–20. (In Russ.)] doi: https://doi.org/10.14341/osteo10038
  8. Пигарова Е.А., Рожинская Л.Я., Катамадзе Н.Н., и др. Распространенность дефицита и недостаточности витамина D среди населения, проживающего в различных регионах Российской Федерации: результаты 1-го этапа многоцентрового поперечного рандомизированного исследования // Остеопороз и остео- патии. — 2020. — Т. 23. — № 4. — С. 4–12. [Pigarova EA, Rozhinskaya LY, Katamadze NN, et al. Prevalence of vitamin D deficiency in various regions of the Russian Federation: results of the first stage of the multicenter cross-sectional randomized study. Osteoporosis and Bone Diseases. 2020;23(4):4–12. (In Russ.)] doi: https://doi.org/10.14341/osteo12701
  9. Желтикова Т.М., Денисов Д.Г., Мокроносова М.А. Гендерные и возрастные особенности статуса витамина D (25(ОН) D) в России // РМЖ. — 2019. — Т. 27. — № 12. — С. 51–56. [Zheltikova1 TM, Denisov DG, Mokronosova1 MA. Gender and age-related characteristics of vitamin D (25(ОН)D) in Russia. RMJ. 2019;27(12):51–56. (In Russ.)]
  10. Салухов В.В., Ковалевская Е.А., Курбанова В.В. Костные и внекостные эффекты витамина D, а также возможности медикаментозной коррекции его дефицита // Медицинский совет. — 2018. — № 4. — С. 90–99. [Salukhov VV, Kovalevskaya EA, Kurbanova VV. Osteal and extraosteal effects of vitamin D and its opportunities of medication correction of its deficiency. Meditsinskiy Sovet. 2018;4:90–99. (In Russ.)] doi: https://doi.org/10.21518/2079-701X-2018-4-90-99
  11. Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol. Metab. 2001;12(1):22–28. doi: https://doi.org/10.1016/S1043-2760(00)00336-2
  12. Bonjour JP, Thentz G, Buchs B, еt al. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73(3):555–563. doi: https://doi.org/10.1210/jcem-73-3-555
  13. Javaid MK, Crozier SR, Harvey NC, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet. 2006;367(9504):36–43. doi: https://doi.org/10.1016/S0140-6736(06)67922-1
  14. Blum M, Dolnikowski G, Seyoum E, et al. Vitamin D3 in fat tissue. Endocrine. 2008;33(1):90–94. doi: https://doi.org/10.1007/s12020-008-9051-4
  15. Kull M, Kallikorm R, Lember M. Body mass index determines sunbathing habits: implications on vitamin d levels. Intern Med J. 2009;39(4):256–258. doi: https://doi.org/10.1111/j.1445-5994.2009.01900.x
  16. Коденцова В.М., Рисник Д.В. Витамин D — алиментарный фактор профилактики заболеваний, обусловленных его дефицитом // Медицинский совет. — 2022. — Т. 16. — № 6. — С. 181–191. [Kodentsova VM, Risnik DV. Vitamin D — an alimentary factor in the prevention of diseases caused by its deficiency. Мeditsinskiy Sovet. 2022;16(6):181–191. (In Russ.)] doi: https://doi.org/10.21518/2079-701X-2022-16-6-181-191
  17. Girgis CM, Clifton-Bligh R, Mokbel N, et al. Vitamin D Signaling Regulates Proliferation, Differentiation, and Myotube Size in C2C12 Skeletal Muscle Cells. Endocrinology. 2014;155(2):347–357. doi: https://doi.org/10.1210/en.2013-1205
  18. Henwood TR, Keogh JW, Reid N, et al. Assessing sarcopenic prevalence and risk factors in residential aged care: methodology and feasibility. J Cachexia Sarcopenia Muscle. 2014;5(3):229–236. doi: https://doi.org/10.1007/s13539-014-0144-z
  19. Sayer AA, Dennison EM, Syddall HE, et al. The developmental origins of sarcopenia: using peripheral quantitative computed tomography to assess muscle size in older people. J Gerontol A Biol Sci Med Sci. 2008;63(8):835–840. doi: https://doi.org/10.1093/gerona/63.8.835
  20. Komi PV. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J Biomech. 2000;33(10):1197–1206. doi: https://doi.org/10.1016/S0021-9290(00)00064-6
  21. Makanae Y, Ogasawara R, Sato K, et al. Acute bout of resistance exercise increases vitamin D receptor protein expression in rat skeletal muscle. Exp Physiol. 2015;100(10):1168–1176. doi: https://doi.org/10.1113/EP085207
  22. Lombardi G, Vitale JA, Logoluso S, et al. Circannual rhythm of plasmatic vitamin D levels and the association with markers of psychophysical stress in a cohort of italian professional soccer players. Chronobiol Int. 2017;34(4):471–479. doi: https://doi.org/10.1080/07420528.2017.1297820
  23. Carswell AT, Oliver SJ, Wentz LM, et al. Influence of Vitamin D supplementation by sunlight or oral D3 on exercise performance. Med Sci Sports Exerc. 2018;50(12):2555–2564. doi: https://doi.org/10.1249/MSS.0000000000001721
  24. Chiang CM, Ismaeel A, Gris RB, et al. Effects of vitamin D supplementation on muscle strength in athletes: A systematic review. J Strength Cond Res. 2017;31(2):566–574. doi: https://doi.org/10.1519/JSC.0000000000001518
  25. Fairbairn KA, Ceelen IJM, Skeaff CM, et al. Vitamin D3 supplementation does not improve sprint performance in professional rugby players: a randomized, placebo-controlled, double-blind intervention study. Int J Sport Nutr Exerc Metab. 2018;28(1):1–9. doi: https://doi.org/10.1123/ijsnem.2017-0157
  26. Han Q, Li X, Tan Q, et al. Effects of vitamin D3 supplementation on serum 25(OH)D concentration and strength in athletes: a systematic review and meta-analysis of randomized controlled trials. J Int Soc Sports Nutr. 2019;16(1):55. doi: https://doi.org/10.1186/s12970-019-0323-6
  27. Bezuglov E, Tikhonova A, Zueva A, et al. The dependence of running speed and muscle strength on the serum concentration of Vitamin D in young male professional football players residing in the Russian Federation. Nutrients. 2019;11(9):1960. doi: https://doi.org/10.3390/nu11091960
  28. Barsan M, Chelaru VF, Rajnoveanu AG, et al. Difference in Levels of Vitamin D between Indoor and Outdoor Athletes: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2023;24(8):7584. doi: https://doi.org/10.3390/ijms24087584
  29. Каронова Т.Л, Глоба П.Ю., Андреева А.Т., и др. Уровень обеспеченности витамином D и композиционный состав тела у спортсменов // Остеопороз и остеопатии. — 2016. — № 2. — С. 43. [Karonova TL, Globa PJu, Andreeva AT, et al. Uroven’ obespechennosti vitaminom D i kompozicionnyj sostav tela u sportsmenov. Osteoporosis and Bone Diseases. 2016;2:43. (In Russ.)]
  30. Петряев А.С., Яковлев В.В., Коваленко В.В., и др. Спортивные и подвижные игры, как эффективное средство развития физических качеств и формирования эмоционально-волевой устойчивости у курсантов Военно-медицинской академии // Научно-практическая конференция, посвященная 75-летию образования кафедры спортивных и подвижных игр, 12 октября, 2022 г., Санкт-Петербург. [Petrjaev AS, Jakovlev VV, Kovalenko VV, i dr. Sportivnye i podvizhnye igry, kak jeffektivnoe sredstvo razvitija fizicheskih kachestv i formirovanija jemocional’no-volevoj ustojchivosti u kursantov Voenno-medicinskoj akademii. (Conference proceedigs). Nauchno-prakticheskaja konferencija, posvjashhennaja 75-letiju obrazovanija kafedry sportivnyh i podvizhnyh igr; 2022, oct 12; Sankt-Peterburg. (In Russ.)] Available from: http://elibrary.ru/download/elibrary_49762881_83121926.pdf (accessed: 20.06.2023).
  31. Рябчук В.В., Стороженко И.И., Медведев Ю.И., и др. Развитие координационных способностей у курсантов Военно-медицинской академии им. С.М. Кирова на занятиях по физической культуре // Вестник Российской военно-медицинской академии. — 2014. — Т. 45. — № 1. — С. 132–135. [Ryabchuk VV, Storozhenko II, Medvedev YuI, et al. Development of coordination abilities of cadets of Military medical academy named after S.M. Kirov during training sessions of physical education. Bulletin of the Russian Military Medical Academy. 2014;45(1):132–135. (In Russ.)]
  32. Бессель В.В., Кучеров В.Г., Мингалеева Р.Д. Изучение солнечных фотоэлектрических элементов. — М.: Изд. центр РГУ нефти и газа (НИУ) им. И.М. Губкина, 2016. [Bessel VV, Kucherov VG, Mingaleeva RD. Izuchenie solnechnyh fotojelektricheskih jelementov. Moscow: Izdatel’skij centr RGU nefti i gaza (NIU) im. I.M. Gubkina; 2016. (In Russ.)]
  33. Пигарова Е.А., Рожинская Л.Я, Белая Ж.Е., и др. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых // Проблемы эндокринологии. — 2016. — Т. 62. — № 4. — С. 60–84. [Pigarova EA, Rozhinskaya LYa, Belaya ZhE, et al. Russian Association of Endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of Endocrinology. 2016;62(4):60–84. (In Russ.)] doi: https://doi.org/10.14341/probl201662460-84
  34. Скрипникова И.А., Щеплягина Л.А., Новиков В.Е., и др. Возможности костной рентгеновской денситометрии в клинической практике: методические рекомендации. — М., 2015. [Skripnikova IA, Shhepljagina LA, Novikov VE, et al. Vozmozhnosti kostnoj rentgenovskoj densitometrii v klinicheskoj praktike: Metodicheskie rekomendacii. Moscow; 2015. (In Russ.)] Available from: https://gnicpm.ru/wp-content/uploads/2020/01/metod.rekomendacii_densitometria.pdf (accessed: 20.06.2023).
  35. Baxter-Jones AD, Faulkner RA, Forwood MR, et al. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–1739. doi: https://doi.org/10.1249/JSR.0000000000000564
  36. Кондратьева Е.И., Лошкова Е.В., Захарова Е.В., и др. Дефицит витамина D: гендерные особенности // Эндокринология: новости, мнения, обучение. — 2021. — Т. 10. — № 2. — C. 18–25. [Kondratyeva EI, Loshkova EV, Zakharova IN, et al. Vitamin D deficiency: gender characteristics. Endokrinologiya: novosti, mneniya, obuchenie. 2021;10(2):18–25. (In Russ.)] doi: https://doi.org/10.33029/2304-9529-2021-10-2-18-25
  37. Jonvik KL, Torstveit MK, Sundgot-Borgen J, et al. Do we need to change the guideline values for determining low bone mineral density in athletes? J Appl Physiol. 2022;132(5):1320–1322. doi: https://doi.org/10.1152/japplphysiol.00851.2021
  38. Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad-Relative Energy Deficiency in Sport. Br J Sports Med. 2014;48(7):491–497. doi: https://doi.org/10.1136/bjsports-2014-093502
  39. Ревматология. Российские клинические рекомендации / под ред. Е.Л. Насонова. — М.: ГЭОТАР-Медиа, 2020. [Rheumatology. Russian clinical guidelines. Ed. by E.L. Nasonov. Moscow: GEOTAR-Media; 2020. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Estimation of vitamin D supply of cadets of a military higher education institution, %

Download (155KB)
3. Fig. 2. Median vitamin D level of cadets depending on the region of residence before entering a military higher education institution

Download (180KB)
4. Fig. 3. Level of bone mineral density of cadets of military higher education institution, %

Download (113KB)

Copyright (c) 2024 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies