A Single-Stage Population-Based Study of the Relationship between Cognitive and Somatic Health Parameters in Children of Secondary School Age

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. One of the four important components of the formation of cognitive functions is somatic health. But to date, there are no population studies that consider the relationship with cognitive functions and school performance of a large range of somatic factors, which allows us to compare the strength of their hypothetical contribution to cognitive functioning with each other. This study is the second part of a population-based study, the first part of which is presented in the previous publication "A Single-Stage Population-Based Study of the Prevalence of Mild Cognitive Impairment in Children of Secondary School Age". Aims — to determine the main patterns in the relationship between cognitive-academic and somatic factors in a cohort of Russian children, 5th grade students at school. Methods. In Russian schoolchildren of the 5th grades of municipalities representing cities of all federal districts of the Russian Federation, the links with integrative cognitive success, the number of subtests performed at the level of mild cognitive impairment, the results of individual cognitive subtests, academic performance and the leading hand factor were analyzed — the following somatic factors: the presence of skin pathology, bronchial asthma, orthopedic, ophthalmological disorders, visual acuity, body mass index, parameters of the study of the function of external respiration, electrocardiography, ultrasound examination of the thyroid gland, laboratory blood tests. Results. The results of the survey of 1036 participants, 51% of them girls, were admitted to the analysis. It has been established that iron content is directly related to integrative cognitive success and school performance, the relationship is especially strong between subgroups of iron content above and below 26.4 mmol/l. Clinical levels of erythrocytes are more strongly associated with integrative cognitive success and individual cognitive functions than other factors: in erythropenia cognitive parameters are worse. The presence of thyroid cysts directly correlates with some of the worst parameters of cognitive activity. High body mass index and low hemoglobin are associated with poorer academic performance. Conclusions. The results of the study for the first time on a cohort of Russian schoolchildren showed a connection with cognitive activity and school performance of a number of somatic factors, including iron content, which requires further in-depth study.

Full Text

Restricted Access

About the authors

George A. Karkashadze

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Author for correspondence.
Email: karkga@mail.ru
ORCID iD: 0000-0002-8540-3858
SPIN-code: 6248-0970

MD, PhD

Russian Federation, Moscow

Elena V. Kaitukova

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: sunrise_ok@mail.ru
ORCID iD: 0000-0002-8936-3590
SPIN-code: 1272-7036

MD, PhD

Russian Federation, Moscow; Moscow

Tinatin Y. Gogberashvili

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: tinatina2004@mail.ru
ORCID iD: 0000-0001-9790-7490
SPIN-code: 5723-4805

PhD of Psychological Sciences

Russian Federation, Moscow

Tatiana A. Konstantinidi

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: tkonstantinidi@list.ru
SPIN-code: 7971-2040

MD, PhD

Russian Federation, Moscow

Olga B. Gordeeva

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: obr@yandex.ru
ORCID iD: 0000-0001-8311-9506
SPIN-code: 2562-7725

MD, PhD

Russian Federation, Moscow; Moscow

Aishat M. Gazalieva

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: a.m.gazalieva@gmail.com
ORCID iD: 0009-0000-0293-1771
SPIN-code: 5540-7933

MD, PhD

Russian Federation, Moscow

Margarita A. Soloshenko

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: margosoloshenko@mail.ru
ORCID iD: 0000-0002-6150-0880
SPIN-code: 2954-9873

MD, PhD

Russian Federation, Moscow

Svetlana E. Kondratova

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: svetlana26.03@mail.ru
ORCID iD: 0000-0002-6522-5310
SPIN-code: 9095-2169
Russian Federation, Moscow

Eka A. Abashidze

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: 2803abashidze@mail.ru
ORCID iD: 0000-0002-5366-894X
SPIN-code: 6471-9838

MD, PhD

Russian Federation, Moscow

Grigory V. Revunenkov

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery

Email: rgv07@mail.ru
ORCID iD: 0000-0001-7834-213X
SPIN-code: 9754-3642

MD, PhD

Russian Federation, Moscow

Elena V. Komarova

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: dr.klv@rambler.ru
ORCID iD: 0000-0001-6000-5418
SPIN-code: 2581-8021

MD, PhD

Russian Federation, Moscow; Moscow

Marika I. Ivardava

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: makussa@mail.ru
ORCID iD: 0000-0002-4669-9510
SPIN-code: 4865-4688

MD, PhD

Russian Federation, Moscow; Moscow

Oksana M. Drapkina

National Medical Research Center for Therapy and Preventive Medicine

Email: ODrapkina@gnicpm.ru
ORCID iD: 0000-0002-4453-8430
SPIN-code: 4456-1297

MD, PhD, Professor, Academician of the RAS

Russian Federation, Moscow

Ruslan N. Shepel

National Medical Research Center for Therapy and Preventive Medicine

Email: r.n.shepel@mail.ru
ORCID iD: 0000-0002-8984-9056
SPIN-code: 3115-0515

MD, PhD

Russian Federation, Moscow

Kazbek S. Mezhidov

National Medical Research Center for Therapy and Preventive Medicine

Email: kmezhidov@mail.ru
ORCID iD: 0000-0002-6032-6286
SPIN-code: 6906-6680

MD, PhD

Russian Federation, Moscow

Leyla S. Namazova-Baranova

Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University (Pirogov Medical University)

Email: leyla.s.namazova@gmail.com
ORCID iD: 0000-0002-2209-7531
SPIN-code: 1312-2147

MD, PhD, Professor, Academician of the RAS

Russian Federation, Moscow; Moscow

References

  1. Каркашадзе Г.А., Маслова О.И., Намазова-Баранова Л.С. Актуальные проблемы диагностики и лечения легких когнитивных нарушений у детей // Педиатрическая фармакология. — 2011. — Т. 8. — № 5. — С. 37–41. [Karkashadze G, Maslova O, Namazova-Baranova L. Current problems of diagnosis and treatment of mild cognitive impairments in children. Pediatric pharmacology. 2011;8(5):37–41. (In Russ.)]
  2. Alex AM, Buss C, Davis EP, et al. Genetic Influences on the Developing Young Brain and Risk for Neuropsychiatric Disorders. Biol Psychiatry. 2023;93(10):905–920. doi: https://doi.org/10.1016/j.biopsych.2023.01.013
  3. Rees P, Callan C, Chadda K, et al. School-age outcomes of children after perinatal brain injury: a systematic review and meta-analysis. BMJ Paediatr Open. 2023;7(1):e001810. doi: https://doi.org/10.1136/bmjpo-2022-001810
  4. Bagrowski B. Perspectives for the application of neurogenetic research in programming Neurorehabilitation. Mol Aspects Med. 2023;91:101149. doi: https://doi.org/10.1016/j.mam.2022.101149
  5. Ng R, Kalinousky A, Harris J. Epigenetics of cognition and behavior: insights from Mendelian disorders of epigenetic machinery. J Neurodev Disord. 2023;15(1):16. doi: https://doi.org/10.1186/s11689-023-09482-0
  6. Zhang Y, Liu X, Wiggins KL, et al. Association of Mitochondrial DNA Copy Number with Brain MRI Markers and Cognitive Function: A Meta-analysis of Community-Based Cohorts. Neurology. 2023;100(18):e1930–e1943. doi: https://doi.org/10.1212/WNL.0000000000207157
  7. Yuan A, Halabicky O, Rao H, et al. Lifetime air pollution exposure, cognitive deficits, and brain imaging outcomes: A systematic review. Neurotoxicology. 2023;96:69–80. doi: https://doi.org/10.1016/j.neuro.2023.03.006
  8. Guxens M, Lubczyńska MJ, Muetzel RL, et al. Air Pollution Exposure During Fetal Life, Brain Morphology, and Cognitive Function in School-Age Children. Biol Psychiatry. 2018;84(4):295–303. doi: https://doi.org/10.1016/j.biopsych.2018.01.016
  9. Prime H, Andrews K, Markwell A, et al. Positive Parenting and Early Childhood Cognition: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Child Fam Psychol Rev. 2023;26(2):362–400. doi: https://doi.org/10.1007/s10567-022-00423-2
  10. Lysons J, Jadva V. The psychosocial outcomes of older parenthood in early to mid-childhood: a mini-review. Hum Reprod. 2023;38(6):1028–1035. doi: https://doi.org/10.1093/humrep/dead070
  11. Guzzardi MA, La Rosa F, Iozzo P. Trust the gut: Outcomes of gut microbiota transplant in metabolic and cognitive disorders. Neurosci Biobehav Rev. 2023;149:105143. doi: https://doi.org/10.1016/j.neubiorev.2023.105143
  12. Chanpong A, Thapar N. Pediatric Neurogastroenterology and Motility: Moving Rapidly Into the Future. J Pediatr Gastroenterol Nutr. 2023;76(5):547–552. doi: https://doi.org/10.1097/MPG.0000000000003721
  13. Yoong SL, Lum M, Wolfenden L, et al. Healthy eating interventions delivered in early childhood education and care settings for improving the diet of children aged six months to six years. Cochrane Database Syst Rev. 2023;6(6):CD013862. doi: https://doi.org/10.1002/14651858.CD013862.pub2
  14. Saavedra JM, Prentice AM. Nutrition in school-age children: a rationale for revisiting priorities. Nutr Rev. 2023;81(7):823–843. doi: https://doi.org/10.1093/nutrit/nuac089
  15. DiGirolamo AM, Ochaeta L, Flores RMM. Early Childhood Nutrition and Cognitive Functioning in Childhood and Adolescence. Food Nutr Bull. 2020;41(1_suppl):S31–S40. doi: https://doi.org/10.1177/0379572120907763
  16. Minogue J, Keogh S, Schlapbach LJ, et al. Long-term outcomes after paediatric sepsis: A narrative review. Aust Crit Care. 2023:S1036–7314(23)00057-7. doi: https://doi.org/10.1016/j.aucc.2023.04.002
  17. Hashiya M, Okubo Y, Kato T. Effects of Dexmedetomidine on Brain and Inflammatory Outcomes In Pediatric Cardiac Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Cardiothorac Vasc Anesth. 2023;37(6):1013–1020. doi: https://doi.org/10.1053/j.jvca.2023.02.013
  18. Diaz-Decaro J, Myers E, Mucha J, et al. A systematic literature review on the humanistic burden of cytomegalovirus. Curr Med Res Opin. 2023;39(5):739–750. doi: https://doi.org/10.1080/03007995.2023.2191477
  19. Каркашадзе Г.А., Гогберашвили Т.Ю., Константиниди Т.А., и др. Одномоментное популяционное исследование распространенности легких когнитивных нарушений у детей среднего школьного возраста // Вестник РАМН. — 2023. — Т. 78. — № 4. — С. 329–347. [Karkashadze GA, Gogberashvili TYu, Konstantinidi TA, et al. A Single-Stage Population-Based Study of the Prevalence of Mild Cognitive Impairment in Children of Secondary School Age. Annals of the Russian Academy of Medical Sciences. 2023;78(4):329–347. (In Russ.)] doi: https://doi.org/10.15690/vramn12460
  20. Намазова-Баранова Л.С., Елецкая К.А., Кайтукова Е.В., и др. Оценка физического развития детей среднего и старшего школьного возраста: анализ результатов одномоментного исследования // Педиатрическая фармакология. — 2018. – Т. 15. — № 4. — С. 333–342. [Namazova-Baranova LS, Yeletskaya KA, Kaytukova EV, et al. Evaluation of the Physical Development of Children of Secondary School Age: аn Analysis of the Results of a Cross-Sectional Study. Pediatric Pharmacology. 2018;15(4):333–342. (In Russ.)] doi: https://doi.org/10.15690/pf.v15i4.1948
  21. Дубоносова Е.Ю., Намазова-Баранова Л.С., Вишнева Е.А., и др. Распространенность цитомегаловирусной инфекции среди подростков в Российской Федерации: результаты одномоментного популяционного анализа серопревалентности // Педиатрическая фармакология. — 2021. — Т. 18. — № 6. — С. 451–459. [Dubonosova EYu, Namazova-Baranova LS, Vishneva EA, et al. Cytomegalovirus Infection in Adolescents of Russian Federation: Results of Cross-Sectional Population Analysis of Seroprevalence. Pediatric Pharmacology. 2021;18(6):451–459. (In Russ.)] doi: https://doi.org/10.15690/pf.v18i6.2297
  22. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight
  23. Cochran WG. Sampling Techniques. 3rd ed. N.Y.: Wiley Press; 1977.
  24. Hemphill JF. Interpreting the magnitudes of correlation coefficients. Am Psychol. 2003;58(1):78–79. doi: https://doi.org/10.1037/0003-066x.58.1.78
  25. Sriram U, Patacsil LM. Thyroid nodules. Dis Mon. 2004;50(9):486–526. doi: https://doi.org/10.1016/j.disamonth.2004.08.001
  26. Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427–453. doi: https://doi.org/10.1677/erc.1.00882
  27. Bauer AJ. Thyroid nodules in children and adolescents. Curr Opin Endocrinol Diabetes Obes. 2019;26(5):266–274. doi: https://doi.org/10.1097/MED.0000000000000495
  28. Sriram U, Patacsil LM. Thyroid nodules. Dis Mon. 2004;50(9):486–526. doi: https://doi.org/10.1016/j.disamonth.2004.08.001
  29. Ilyés I. [Current questions of thyroid diseases in childhood]. [Article in Hungarian]. Orv Hetil. 2011;152(16):617–627. doi: https://doi.org/10.1556/OH.2011.29088
  30. Hong HS, Lee EH, Jeong SH, et al. Ultrasonography of various thyroid diseases in children and adolescents: a pictorial essay. Korean J Radiol. 2015;16(2):419–429. doi: https://doi.org/10.3348/kjr.2015.16.2.419
  31. Moschos E, Mentzel H-J. Ultrasound findings of the thyroid gland in children and adolescents. J Ultrasound. 2023;26(1):211–221. doi: https://doi.org/10.1007/s40477-022-00660-9
  32. Gozzelino R. The Pathophysiology of Heme in the Brain. Curr Alzheimer Res. 2016;13(2):174–184. doi: https://doi.org/10.2174/1567205012666150921103304
  33. Nnah IC, Wessling-Resnick M. Brain Iron Homeostasis: A Focus on Microglial Iron. Pharmaceuticals (Basel). 2018;11(4):129. doi: https://doi.org/10.3390/ph11040129
  34. Ferreira A, Neves P, Gozzelino R. Multilevel Impacts of Iron in the Brain: The Cross Talk between Neurophysiological Mechanisms, Cognition, and Social Behavior. Pharmaceuticals (Basel). 2019;12(3):126. doi: https://doi.org/10.3390/ph12030126
  35. Chen Z, Yang H, Wang D, et al. Effect of Oral Iron Supplementation on Cognitive Function among Children and Adolescents in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Nutrients. 2022;14(24):5332. doi: https://doi.org/10.3390/nu14245332
  36. Lozoff B, Beard J, Connor J, et al. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006;64(5Pt2):S34–S43. doi: https://doi.org/10.1301/nr.2006.may.S34-S43
  37. Valerio LG. Mammalian iron metabolism. Toxicol Mech Methods. 2007;17(9):497–517. doi: https://doi.org/10.1080/15376510701556690
  38. Ortiz E, Pasquini JM, Thompson K, et al. Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res. 2004;77(5):681–689. doi: https://doi.org/10.1002/jnr.20207
  39. Beard J. Recent Evidence from Human and Animal Studies Regarding Iron Status and Infant Development. J Nutr. 2007;137(2):524S–530S. doi: https://doi.org/10.1093/jn/137.2.524S
  40. Deinard AS, List A, Lindgren B, et al. Cognitive deficits in iron-deficient and iron-deficient anemic children. J Pediatr. 1986;108(5Pt1):681–689. doi: https://doi.org/10.1016/s0022-3476(86)81041-1
  41. Radlowski EC, Johnson RW. Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci. 2013;7:585. doi: https://doi.org/10.3389/fnhum.2013.00585
  42. Blanton CA, Green MW, Kretsch MJ. Body iron is associated with cognitive executive planning function in college women. Br J Nutr. 2013;109(5):906–913. doi: https://doi.org/10.1017/S0007114512002620
  43. Soemantri AG, Pollitt E, Kim I. Iron deficiency anemia and educational achievement. Am J Clin Nutr. 1985;42(6):1221–1228. doi: https://doi.org/10.1093/ajcn/42.6.1221
  44. Blanton C. Improvements in iron status and cognitive function in young women consuming beef or non-beef lunches. Nutrients. 2013;6(1):90–110. doi: https://doi.org/10.3390/nu6010090
  45. Samson KLI, Fischer JAJ, Roche ML. Iron Status, Anemia, and Iron Interventions and Their Associations with Cognitive and Academic Performance in Adolescents: A Systematic Review. Nutrients. 2022;14(1):224. doi: https://doi.org/10.3390/nu14010224
  46. Agrawal S, Berggren KL, Marks E, et al. Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: A systematic review. Nutr Rev. 2017;75(6):456–470. doi: https://doi.org/10.1093/nutrit/nux015
  47. Lam P, Kritz-Silverstein D, Barrett-Connor E, et al. Plasma trace elements and cognitive function in older men and women: The Rancho Bernardo study. J Nutr Health Aging. 2008;12(1):22–27. doi: https://doi.org/10.1007/BF02982160
  48. Schiepers OJG, van Boxtel MPJ, de Groot RHM, et al. Serum iron parameters, HFE C282Y genotype, and cognitive performance in older adults: results from the FACIT study. J Gerontol A Biol Sci Med Sci. 2010;65(12):1312–1321. doi: https://doi.org/10.1093/gerona/glq149
  49. Kalpouzos G, Mangialasche F, Falahati F, et al. Contributions of HFE polymorphisms to brain and blood iron load, and their links to cognitive and motor function in healthy adults. Neuropsychopharmacol Rep. 2021;41(3):393–404. doi: https://doi.org/10.1002/npr2.12197
  50. Bartzokis G, Lu PH, Tingus K, et al. Gender and iron genes may modify associations between brain iron and memory in healthy aging. Neuropsychopharmacology. 2011;36(7):1375–1384. doi: https://doi.org/10.1038/npp.2011.22
  51. Georgieff MK. Iron assessment to protect the developing brain. Am J Clin Nutr. 2017;106(Suppl 6):1588S–1593S. doi: https://doi.org/10.3945/ajcn.117.155846
  52. Isik T, Kurt M, Ayhan E, et al. The impact of admission red cell distribution width on the development of poor myocardial perfusion after primary percutaneous intervention. Atherosclerosis. 2012;224(1):143–149. doi: https://doi.org/10.1016/j.atherosclerosis.2012.06.017
  53. Akkermans MD, Uijterschout L, Vloemans J, et al. Red Blood Cell Distribution Width and the Platelet Count in Iron-deficient Children Aged 0.5–3 Years. Pediatr Hematol Oncol. 2015;32(8):624–632. doi: https://doi.org/10.3109/08880018.2015.1085935
  54. Zhan JY, Zheng SS, Dong WW, et al. [Predictive values of routine blood test results for iron deficiency in children]. Zhonghua Er Ke Za Zhi. 2020;58(3):201–205. doi: https://doi.org/10.3760/cma.j.issn.0578-1310.2020.03.008
  55. Polat V, Iscan S, Etli M, et al. Red cell distribution width as a prognostic indicator in pediatric heart disease and after surgery. Biomed Res Int. 2014;2014:681679. doi: https://doi.org/10.1155/2014/681679
  56. Kurt RK, Aras Z, Silfeler DB, et al. Relationship of red cell distribution width with the presence and severity of preeclampsia. Clin Appl Thromb Hemost. 2015;21(2):128–131. doi: https://doi.org/10.1177/1076029613490827
  57. Kiefer CR, Snyder LM. Oxidation and erythrocyte senescence. Curr Opin Hematol. 2000;7(2):113–116. doi: https://doi.org/10.1097/00062752-200003000-00007
  58. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011–1023. doi: https://doi.org/10.1056/NEJMra041809
  59. Singh H, Singh H, Latief U, et al. Myopia, its prevalence, current therapeutic strategy and recent developments: A Review. Indian J Ophthalmol. 2022;70(8):2788–2799. doi: https://doi.org/10.4103/ijo.IJO_2415_21
  60. Проскурина О.В., Маркова Е.Ю., Бржеский В.В., и др. Распространенность миопии у школьников некоторых регионов России // Офтальмология. — 2018. — Т. 15. — № 3. — С. 348–353. [Proskurina OV, Markova EYu, Brzheskij VV, et al. The Prevalence of Myopia in Schoolchildren in Some Regions of Russia. Ophthalmology in Russia. 2018;15(3):348–353. (In Russ.)] doi: https://doi.org/10.18008/1816-5095-2018-3-348-353
  61. Басинская Л.А., Комаровских Е.Н., Сахнов С.Н., и др. Распространенность и заболеваемость миопией в Краснодарском крае // Кубанский научный медицинский вестник. — 2015. — Т. 153. — № 4. — С. 27–30. [Basinskaya LA, Komarovskikh EN, Sakhnov SN. The Prevalence and Incidence of Myopia in Krasnodar Region. Kuban Scientific Medical Bulletin. 2015;4(153):27–30. (In Russ.)]
  62. Young FA, Leary GA, Baldwin WR, et al. Refractive errors, reading performance, and school achievement among Eskimo children. Am J Optom Arch Am Acad Optom. 1970;47(5):384–390. doi: https://doi.org/10.1097/00006324-197005000-00007
  63. Ashton GC. Nearwork, school achievement and myopia. J Biosoc Sci. 1985;17(2):223–233. doi: https://doi.org/10.1017/s0021932000015686
  64. Teasdale TW, Fuchs J, Goldschmidt E. Degree of myopia in relation to intelligence and educational level. Lancet. 1988;2(8642):1351–1354. doi: https://doi.org/10.1016/s0140-6736(88)90880-x
  65. Mutti DO, Mitchell GL, Moeschberger ML, et al. Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci. 2002;43(12):3633–3640.
  66. He J, Chen X, Fan X, et al. Is there a relationship between body mass index and academic achievement? A meta-analysis. Public Health. 2019;167:111–124. doi: https://doi.org/10.1016/j.puhe.2018.11.002
  67. Bleiweiss-Sande R, Chui K, Wright C, et al. Associations between Food Group Intake, Cognition, and Academic Achievement in Elementary Schoolchildren. Nutrients. 2019;11(11):2722. doi: https://doi.org/10.3390/nu11112722
  68. Gray JC, Schvey NA, Tanofsky-Kraff M. Demographic, psychological, behavioral, and cognitive correlates of BMI in youth: Findings from the Adolescent Brain Cognitive Development (ABCD) study. Psychol Med. 2020;50(9):1539–1547. doi: https://doi.org/10.1017/S0033291719001545
  69. Ronan L, Alexander-Bloch A, Fletcher PC. Childhood Obesity, Cortical Structure, and Executive Function in Healthy Children. Cereb Cortex. 2020;30(4):2519–2528. doi: https://doi.org/10.1093/cercor/bhz257
  70. Altschul DM, Wraw C, Gale CR, et al. How youth cognitive and sociodemographic factors relate to the development of overweight and obesity in the UK and the USA: a prospective cross-cohort study of the National Child Development Study and National Longitudinal Study of Youth 1979. BMJ Open. 2019;9(12):e033011. doi: https://doi.org/10.1136/bmjopen-2019-033011
  71. Mattey-Mora PP, Nelson EJ. Sleep Disturbances, Obesity, and Cognitive Function in Childhood: A Mediation Analysis. Curr Dev Nutr. 2021;5(10):nzab119. doi: https://doi.org/10.1093/cdn/nzab119
  72. Laurent JS, Watts R, Adise S, et al. Associations Among Body Mass Index, Cortical Thickness, and Executive Function in Children. JAMA Pediatr. 2020;174(2):170–177. doi: https://doi.org/10.1001/jamapediatrics.2019.4708
  73. Veldwijk J, Scholtens S, Hornstra G, et al. Body mass index and cognitive ability of young children. Obes Facts. 2011;4(4):264–269. doi: https://doi.org/10.1159/000331015
  74. Anderson YC, Kirkpatrick K, Dolan GMS, et al. Do changes in weight status affect cognitive function in children and adolescents with obesity? A secondary analysis of a clinical trial. BMJ Open. 2019;9(2):e021586. doi: https://doi.org/10.1136/bmjopen-2018-021586
  75. Banjevic B, Aleksic D, Aleksic Veljkovic A, et al. Differences between Healthy-Weight and Overweight Serbian Preschool Children in Motor and Cognitive Abilities. Int J Environ Res Public Health. 2022;19(18):11325. doi: https://doi.org/10.3390/ijerph191811325
  76. Syan SK, Owens MM, Goodman B, et al. Deficits in executive function and suppression of default mode network in obesity. Neuroimage Clin. 2019;24:102015. doi: https://doi.org/10.1016/j.nicl.2019.102015

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Relationship between iron content and belonging to a cognitive cluster: 0 - more successful, 1 - less successful cognitive clusters

Download (144KB)

Copyright (c) 2023 "Paediatrician" Publishers LLC



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies