Thermal Helium-Oxygen Mixture as Part of a Treatment Protocol for Patients with COVID-19

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Background. The paper discusses the use of a thermal helium-oxygen mixture (t-Не/О2 ), a novel technology, in treating patients with the 2019-nCoV acute respiratory disease (COVID-19) who develop life-threatening respiratory failure.

Aim – to evaluate the safety and efficacy of t-Не/О2 inhalation combined with standard therapy in the treatment of acute respiratory failure in patients with COVID-19.

Materials and Methods. This was a single-center, randomized, prospective study of 70 patients with COVID-19. All patients were divided into two groups: in Group 1 (n = 38) patients received t-He/О2 in addition to the standard COVID-19 treatment; and in Group 2 (n = 32) patients were given the standard treatment in accordance with the Clinical Treatment Guidelines for patients with COVID-19, developed by the Ministry of Health of the Russian Federation. The male/female ratio was 18/20 in Group 1 and 18/14 in Group 2. The mean age of the patients in the study was 53.5 years (43; 62): 56 years (42; 64) in Group 1 and 52 years (43; 66) in Group 2. All patients had computed tomography (CT) signs of lung injury: ground-glass opacities and areas of consolidation. SARS-CoV-2 RNA was detected in 30 Group 1 patients and 28 Group 2 patients. The patients were matched by sex, age, body mass index (BMI), area of pulmonary involvement, and laboratory findings. All patients provided voluntary informed consent to participate in the study and signed a consent form.

Results. Inhalation of thermal helium-oxygen mixture combined with standard therapy did not cause any procedure-related side effects in any of the patients. The following changes were observed in all patients: pO2 /FiO2 , SpO2 , and lymphocyte counts increased, C-reactive protein (CRP) levels decreased, and D-dimer and ferritin levels returned to normal. In Group 1 statistically significant changes in the above-mentioned parameters were seen within three days, while in Group 2 the same changes were observed between Days 7 and 10 of treatment. In Group 1 patients cleared SARS-CoV-2 within 48–72 hours after initiation of inhalation, which was confirmed by polymerase chain reaction (PCR), and in Group 2 virus elimination was achieved within 72–168 hours.

Conclusion. The addition of inhalation of a thermal gas mixture of helium and oxygen (t-He/О2 ) to the standard therapy for patients with SARS-CoV-2 infection, CT signs of pneumonia (grades СT2 or CT3), and acute respiratory failure improves gas exchange, contributes to a more rapid virus elimination, and indirectly reduces inflammation.


Full Text

Restricted Access

About the authors

Lyudmila V. Shogenova

The Russian National Research Medical University named after N.I. Pirogov

Author for correspondence.
Email: luda_shog@list.ru
ORCID iD: 0000-0001-9285-9303
SPIN-code: 6210-7482

Russian Federation, 32 bld 4, 11 Parkovaya str., 105077, Moscow, Russia

Candidate of Medical Sciences, Associate Professor of the Department

Sergey S. Petrikov

The Moscow Department of Health N.V. Sklifosovsky Federal Research Institute of Emergency Medicine

Email: petrikovss@sklif.mos.ru
ORCID iD: 0000-0003-3292-8789

Russian Federation, Bolshaya Sukharevskaya Square 3, Moscow, 129090, Russia

MD, PhD, Professor, Сorresponding Member of the RAS

Sergey V. Zhuravel

The Moscow Department of Health N.V. Sklifosovsky Federal Research Institute of Emergency Medicine

Email: zhsergey5@gmail.com
ORCID iD: 0000-0002-9992-9260
SPIN-code: 5338-0571

Russian Federation, Bolshaya Sukharevskaya Square 3, Moscow, 129090

MD, PhD

Pavel V. Gavrilov

The Moscow Department of Health N.V. Sklifosovsky Federal Research Institute of Emergency Medicine

Email: likesport10@mail.ru
ORCID iD: 0000-0001-9640-201X
SPIN-code: 8290-5602

Russian Federation, Bolshaya Sukharevskaya Square 3, Moscow, 129090, Russia

Junior Research Associate

Irina I. Utkina

The Moscow Department of Health N.V. Sklifosovsky Federal Research Institute of Emergency Medicine

Email: irishka_utkina@list.ru
ORCID iD: 0000-0002-5685-4916
SPIN-code: 8105-7338

Russian Federation, Bolshaya Sukharevskaya Square 3, Moscow, 129090, Russia

PhD in Medicine

Sergey D. Varfolomeev

Institute of Physicochemical Foundations of the Functioning of Neural Network and Artificial Intellegence Moscow State University; Emanuel Institute of Biochemical Physics Russian Academy of Sciences;Department of Chemistry Moscow State University.

Email: sdvarf@bk.ru
ORCID iD: 0000-0003-2793-0710
SPIN-code: 7873-3673

Russian Federation, Leninskie Gory, 1–11B, Moscow, 119991; Kosygina str, 4, Moscow, 119334; Leninskie Gory, 1–11B, Moscow, 119991

PhD in Chemistry, Professor, Corresponding Member of the RAS

Anna M. Ryabokon

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Department of Chemistry, Moscow State University

Email: amryabokon@gmail.com
ORCID iD: 0000-0001-9043-9129
SPIN-code: 7322-5643

Russian Federation, Leninskie Gory, 1–11B, Moscow, 119991; Kosygina str, 4, Moscow, 119334

PhD in Chemistry, Senior Research Associate

Alexander A. Panin

Society with limited liability "MEDTEHINNOVATSII"

Email: panin.alexander2009@yandex.ru
ORCID iD: 0000-0002-0114-4976

Russian Federation, Blagoveshchenskii per, 3-1, Moscow, 123001

PhD in Economics

Alexander G. Chuchalin

Pirogov Russian National Research Medical University

Email: pulmomoskva@mail.ru
ORCID iD: 0000-0002-6808-5528
SPIN-code: 7742-2054

Russian Federation, Ostrovityanova str. 1, Moscow, 117997

MD, PhD, Professor, Academician of the RAS

References

  1. Hui DS, Azhar EI, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–266. doi: https://doi.org/10.1016/j.ijid.2020.01.009
  2. who.int [internet] WHO Director-General’s opening remarks at the media briefing on COVID-19 — 11 March 2020 [updated 2020 Mar 11; cited 2020 Oct 17]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  3. mail.ru [интернет] Коронавирус COVID-19 [доступ от 17.10.2020]. Available from: https://news.mail.ru/story/incident/coronavirus/
  4. tass.ru [интернет] Эксперт Минздрава: в реанимации умирают более 76% пациентов с коронавирусом на ИВЛ [доступ от 17.10.2020]. Available from: https://tass.ru/obschestvo/9642091
  5. Kapitza P. Liquefaction of helium by an adiabatic method without pre-cooling with liquid hydrogen. Nature. 1934;133:708–709. doi: https://doi.org/10.1038/133708a0
  6. Kapitza P. The liquefaction of helium by an adiabatic method. Proceedings of the Royal Society. 1934;147(860):189–211.
  7. Варфоломеев С.Д., Панин А.А., Цыбенова С.Б., и др. Протеом термического гелиокса. Высокотемпературный гелиокс не вызывает разрушение клеток дыхательной системы человека // Терапевтический архив. — 2020. — Т. 92. — № 6. — С. 69–72. [Varfolomeev SD, Panin AA, Tsybenova SB, et al Thermal heliox proteome. High-temperature heliox does not cause destruction of human respiratory system cells. Terapevticheskii Arkhiv. 2020;92(6):69–72 (In Russ.)] doi: https://doi.org/10.26442/00403660.2020.06.000769
  8. Куценко М.А. Острая дыхательная недостаточность у больных с обострением хронической обструктивной болезни легких и ее лечение кислородно-гелиевой смесью: Дис. ... канд. мед. наук. — М., 2000. [Kuzenko M.A. Acute respiratory failure in patients with exacerbation of chronic obstructive pulmonary disease and its treatment with an oxygen-helium mixture. dissertation] Moscow; 2000. (In Russ).] Available from: https://rusneb.ru/catalog/000200_000018_RU_NLR_bibl_271311 (accessed: 22.09.2020).
  9. Шогенова Л.В. Эффективность терапии гелиоксом больных обструктивными болезнями легких при острой дыхательной недостаточности. Дис. ... канд. мед. наук. — Москва; 2003. [Shogenova L.V. The effectiveness of heliox therapy in patients with obstructive pulmonary disease in acute respiratory failure [dissertation]. Moscow; 2000. (In Russ.)]. Available from: https://www.dissercat.com/content/effektivnost-terapii-gelioksom-bolnykh-obstruktivnymi-boleznyami-legkikh-pri-ostroi-dykhatel. (accessed: 22.09.2020).
  10. Kim T, Chuchalin A, Martynov M, et al. Efficacy and safety of thermic helium-oxygen (t-He/O2) mixture in reducing hypoxemia in acute ischemic stroke Patients. European Respiratory Journal. 2009;54(Suppl63):PA2284. doi: https://doi.org/10.1183/13993003.congress-2019.PA2284
  11. Чучалин А.Г., Гусев У.И., Мартынов М.Ю., и др. Дыхательная недостаточность в остром периоде церебрального инсульта: факторы риска и механизмы развития // Журнал неврологии и психиатрии им. С.С. Корсакова — 2020. — Т. 120. — № 4. — С. 7–16. [Chuchalin AG, Gusev UI, Martynov MYu, et al. Respiratory failure in the acute period of cerebral stroke: risk factors and mechanisms of development. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(7):7–16 (In Russ.)] doi: https://doi.org/10.17116/jnevro20201200717
  12. Патент РФ на изобретение № 2019135959/ 08.11.2019. Бюл. № 21. Шугинин И.О., Панин А.А., Чучалин А.Г., Петрухин В.А., Шидловская Н.В., Лысенко С.Н. «Способ лечения беременных с фетоплацентарной недостаточностью. [Patent RUS № 2019135959/ 08.11.2019. Byul. № 21 Shuginin IO, Panin AA, Chuchalin AG, Petrukhin VA., Shidlovskaya NV., Lysenko SN. Method for the treatment of pregnant women with placental insufficiency (In Russ.)] Available from: https://patenton.ru/patent/RU2324486C212.08.2020
  13. Варфоломеев С.Д., Панин А.А., Цыбенова С.Б., и др. Кинетическая модель развития острой инфекции в организме человека. Критические условия, механизмы управления, термогелиокс // Известия Академии наук. Серия химическая. — 2020. — № 6. — С. 1179–1184. [Varfolomeev S.D., Panin A.A., Ryabokon A.M., et al. Kinetic model of development of acute viral infection in the human body. Critical conditions, control mechanisms, “Thermoheliox”. Russian Chemical Bulletin. 2020;6:1179–1184. (In Russ.)]
  14. Pastorino B., Touret F, Gilles M, et al. Evaluation of heating and chemical protocols for inactivating SARS-CoV-2. BioRxiv. 2020. doi: https://doi.org/10.1101/2020.04.11.036855
  15. Lin J, Huang W, Wen M, et al. Containing the Spread of Coronavirus Disease 2019 (COVID-19): Meteorological Factors and Control Strategies. Science of the Total Environment. 2020:744:140935. doi: https://doi.org/10.1016/j.scitotenv.2020.140935

Supplementary files

Supplementary Files Action
1.
Fig. 1. Study design in parallel groups

View (250KB) Indexing metadata
2.
Fig. 2. Dynamics of pО2 / FiO2 in comparison groups (* p <0.05)

View (151KB) Indexing metadata
3.
Fig. 3. Dynamics of SpO2 in comparison groups (* p <0.05)

View (111KB) Indexing metadata
4.
Fig. 4. Dynamics of the need for respiratory support in comparison groups (* p <0.05)

View (167KB) Indexing metadata
5.
Fig.5. Dynamics of the number of positive PCR tests in comparison groups (* p <0.05)

View (124KB) Indexing metadata
6.
Fig. 6. Dynamics of the D-dimer index in the comparison groups (* p <0.05)

View (116KB) Indexing metadata
7.
Fig. 7. Dynamics of CRP indicator in comparison groups (* p <0.05)

View (112KB) Indexing metadata
8.
Fig. 8. Dynamics of ferritin index in comparison groups (* p <0.05)

View (123KB) Indexing metadata
9.
Fig. 9. Dynamics of the lymphocyte count in the comparison groups (* p <0.05)

View (111KB) Indexing metadata

Statistics

Views

Abstract - 183

PDF (Russian) - 3

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies