Extracellular neutrophil traps (NETs) in the pathogenesis of thrombosis and thromboinflammation

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


This article summarizes numerous studies on the relationship of biological processes such as inflammation and thrombosis. The huge role of neutrophils and the extracellular neutrophil traps (NETs) secreted by them has been demonstrated. The discovery of NETs has opened new horizons in the understanding of neutrophil biology and the role of these cells in the body. The use of chromatin in combination with the intracellular proteins, as an effective antimicrobial agent has ancient roots and changes our understanding of chromatin only as a carrier of genetic information. Through NETs, neutrophils can contribute to the development of pathological venous and arterial thrombosis or “immunothrombosis”, as well as atherosclerosis. NETs release has been shown to be one of the causes of thrombosis in conditions such as sepsis and cancer. The presence of NETs in these diseases and conditions makes it possible to use them or individual components as potential biomarkers. NETs and their components may be attractive as therapeutic targets. Further studies of neutrophils and NETs are needed to develop new approaches to the diagnosis and treatment of inflammatory and thrombotic conditions. Perhaps long-forgotten drugs will find a new area for effective use.

Full Text

Restricted Access

About the authors

Victoria O. Bitsadze

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-code: 5930-0859

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Ekaterina V. Slukhanchuk

Petrovsky National Research Center of Surgery

Email: beloborodova@rambler.ru
ORCID iD: 0000-0001-7441-2778
SPIN-code: 7423-8944

MD, PhD, Assistant Professor

Russian Federation, 2, Abrikosovsky pereulok, Moscow, 119991

Jamilya H. Khizroeva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: jamatotu@gmail.com
ORCID iD: 0000-0002-0725-9686
SPIN-code: 8225-4976
Scopus Author ID: 57194547147
ResearcherId: F-8384-2017

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Maria V. Tretyakova

The First I.M. Sechenov Moscow State Medical University (Sechenov University); Medical Center LLC

Email: tretyakova777@yandex.ru
ORCID iD: 0000-0002-3628-0804
SPIN-code: 1463-0065

MD, PhD, Assistant Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992; Timura Frunze str.15/1, 119021, Moscow

Andrei S. Shkoda

L.A. Vorokhobov City Clinical Hospital Sixty-seven

Email: 67gkb@mail.ru
ORCID iD: 0000-0002-9783-1796

MD, PhD, Professor

Russian Federation, 2/44, Salyama Adilya str., Moscow, 123423

Liudmila S. Radetskaya

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: udaeva@gmail.com
ORCID iD: 0000-0003-3410-6885
SPIN-code: 4554-7324

MD, Associated Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Alexander D. Makatsariya

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-code: 7538-2966

MD, PhD, Academician of the RAS

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Ismail Elalamy

I.M. Sechenov Moscow State Medical University (Sechenov University); Medicine Sorbonne University, University Hospital Tenon

Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368
Scopus Author ID: 7003652413

MD, PhD, Professor

Russian Federation, Trubetskaya str. 8-2, 119991; rue de la Chine 75970 Paris Cédex 20, France

Jean-Christophe Gris

I.M. Sechenov First Moscow State Medical University (Sechenov University); University Montpellier, France

Email: jean.christophe.gris@chu-nimes.fr
ORCID iD: 0000-0002-9899-9910
Scopus Author ID: 7005114260

MD, PhD, Professor

Russian Federation, Trubetskaya str. 8-2, 119991, Moscow; Place du Pr. Robert Debré 30039 Nîmes cédex 09

Elvira Grandone

The First I.M. Sechenov Moscow State Medical University, (Sechenov University);
Thrombosis and Haemostasis Research Unit, Fondazione I.R.C.C.S. "Casa Sollievo della Sofferenza"

Email: grandoneelvira@gmail.com
ORCID iD: 0000-0002-8980-9783
Scopus Author ID: 7006391091

MD, PhD, Professor, Department of thrombosis and hemostasis

Italy, Trubetskaya str. 8-2, 119991, Moscow; 71043, Viale Padre Pio, San Giovanni Rotondo, Foggia, Italy


  1. Burzynski LC, Humphry M, Pyrillou K, et al. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin. Immunity. 2019;50:1033–1042. doi: https://doi.org/10.1016/j.immuni.2019.03.003
  2. Bonaventura A, Montecucco F, Dallegri F, et al. Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res. 2019;115:1266–1285. doi: https://doi.org/10.1093/cvr/cvz084
  3. Bonaventura A, Vecchié A, Abbate A, Montecucco F. Neutrophil extracellular traps and cardiovascular diseases: an update. Cells. 2020;9:231. doi: https://doi.org/10.3390/cells9010231
  4. Mitsios A, Arampatzioglou A, Arelaki S, et al. NETopathies? Unraveling the dark side of old diseases through neutrophils. Front Immunol. 2017;7:678. doi: https://doi.org/10.3389/fimmu.2016.00678
  5. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279. doi: https://doi.org/10.1038/nm.4294
  6. Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358:1202–1206. doi: https://doi.org/10.1126/science.aam8897
  7. Brinkmann V. Neutrophil extracellular traps in the second decade. J Innate Immun. 2018;10(5-6):414–421. doi: https://doi.org/10.1159/000489829
  8. Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6676. doi: https://doi.org/10.1126/sciimmunol.aar6676
  9. Chrysanthopoulou A, Kambas K, Stakos D, et al. Interferon lambda1/IL‐29 and inorganic polyphosphate are novel regulators of neutrophil‐driven thromboinflammation. J Pathol. 2017;243(1):111–122. doi: https://doi.org/10.1002/path.4935
  10. von Köckritz-Blickwede M, Goldmann O, Thulin P, et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood. 2008;111:3070–3080. doi: https://doi.org/10.1182/blood-2007-07-104018
  11. Pertiwi KR, de Boer OJ, Mackaaij C, et al. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time‐dependent manner during atherothrombosis. J Pathol. 2019;247(4):505–512. doi: https://doi.org/10.1002/path.5212
  12. Marx C, Novotny J, Salbeck D, Zellner KR, Nicolai L, Pekayvaz K, et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood. 2019;134:1859–1872. doi: https://doi.org/10.1182/blood.2019000518
  13. Grilz E, Mauracher LM, Posch F, et al. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol. 2019;186:311–320. doi: https://doi.org/10.1111/bjh.15906
  14. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil extracellular traps: the biology of chromatin externalization. Dev Cell. 2018;44:542–553. doi: https://doi.org/10.1016/j.devcel.2018.01.019
  15. Noubouossie DF, Whelihan MF, Yu Y-B, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129:1021–1029. doi: https://doi.org/10.1182/blood-2016-06-722298
  16. Ivanov I, Shakhawat R, Sun M-F, et al. Nucleic acids as cofactors for factor XI and prekallikrein activation: Different roles for high-molecular-weight kininogen. Thromb Haemost. 2017;117(4):671–681. doi: https://doi.org/10.1160/TH16-09-0691
  17. Kordbacheh F, O’Meara CH, Coupland LA, et al. Extracellular histones induce erythrocyte fragility and anemia. Blood. 2017;130:2884–2888. doi: https://doi.org/10.1182/blood-2017-06-790519
  18. Okeke EB, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials. 2020;238:119836. doi: https://doi.org/10.1016/j.biomaterials.2020.119836
  19. Silvestre-Roig C, Braster Q, Wichapong K, et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569:236–240. doi: https://doi.org/10.1038/s41586-019-1167-6
  20. Wang Y, Luo L, Braun OÖ, et al. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci Rep. 2018;8:1–14. doi: https://doi.org/10.1038/s41598-018-22156-5
  21. Josefs T, Barrett TJ, Brown EJ, et al. Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight. 2020;5. doi: https://doi.org/10.1172/jci.insight.134796
  22. Ashar HK, Mueller NC, Rudd JM, et al. The Role of Extracellular Histones in Influenza Virus Pathogenesis. Am J Pathol. 2018;188:135–148. doi: https://doi.org/10.1016/j.ajpath.2017.09.014
  23. Ducroux C, Di Meglio L, Loyau S, et al. Thrombus neutrophil extracellular traps content impair tPA-induced thrombolysis in acute ischemic stroke. Stroke. 2018;49:754–757. doi: https://doi.org/10.1161/STROKEAHA.117.019896
  24. Vallés J, Lago A, Santos MT, et al. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: prognostic significance. Thromb Haemost. 2017;117:1919–1929. doi: https://doi.org/10.1160/TH17-02-0130
  25. Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Science Translational Medicine. 2018;10:eaan8292. doi: https://doi.org/10.1126/scitranslmed.aan8292
  26. Schedel F, Mayer‐Hain S, Pappelbaum KI, et al. Evidence and impact of neutrophil extracellular traps in malignant melanoma. Pigment Cell Melanoma Res. 2020;33(1):63–73. doi: https://doi.org/10.1111/pcmr.12818
  27. Teijeira Á, Garasa S, Gato M, et al. Cxcr1 and cxcr2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52(5):856–871.e8. doi: https://doi.org/10.1016/j.immuni.2020.03.001
  28. Yang L-Y, Luo Q, Lu L, et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol. 2020;13:1–15. doi: https://doi.org/10.1186/s13045-019-0836-0
  29. White C, Noble SI, Watson M, et al. Prevalence, symptom burden, and natural history of deep vein thrombosis in people with advanced cancer in specialist palliative care units (HIDDen): a prospective longitudinal observational study. Lancet Haematol. 2019;6:e79–e88. doi: https://doi.org/10.1016/S2352--3026(18)30215-1
  30. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Nat Acad Sci. 2012;109(32):13076–13081. doi: https://doi.org/10.1073/pnas.1200419109
  31. Yang S, Qi H, Kan K, et al. Neutrophil extracellular traps promote hypercoagulability in patients with sepsis. Shock. 2017;47(2):132–139. doi: https://doi.org/10.1097/SHK.0000000000000741
  32. Delabranche X, Stiel L, Severac F, et al. Evidence of netosis in septic shock-induced disseminated intravascular coagulation. Shock. 2017;47(3):313–317. doi: https://doi.org/10.1097/SHK.0000000000000719
  33. Kapoor S, Opneja A, Nayak L. The role of neutrophils in thrombosis. Thromb Res. 2018;170:87–96. doi: https://doi.org/10.1016/j.thromres.2018.08.005
  34. Duvvuri B, Pachman LM, Morgan G, et al. Neutrophil Extracellular Traps in Tissue and Periphery in Juvenile Dermatomyositis. Arthritis Rheumatol. 2020;72(2):348–358. doi: https://doi.org/10.1002/art.41078
  35. Goel RR, Kaplan MJ. Deadliest catch: neutrophil extracellular traps in autoimmunity. Curr Op Rheumatol. 2020;32:64–70. doi: https://doi.org/10.1097/BOR.0000000000000667
  36. Angelidou I, Chrysanthopoulou A, Mitsios A, et al. REDD1/autophagy pathway is associated with neutrophil-driven IL-1β inflammatory response in active ulcerative colitis. J Immunol. 2018;200:3950–3961. doi: https://doi.org/10.4049/jimmunol.1701643
  37. Frangou E, Chrysanthopoulou A, Mitsios A, et al. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann Rheum Dis. 2019;78:238–248. doi: https://doi.org/10.1136/annrheumdis-2018-213181
  38. Meng H, Yalavarthi S, Kanthi Y, et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody–mediated venous thrombosis. Arthritis Rheumatol. 2017;69(3):655–667. doi: https://doi.org/10.1002/art.39938
  39. Gollomp K, Kim M, Johnston I, et al. Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight. 2018;3(18):e99445. doi: https://doi.org/10.1172/jci.insight.99445
  40. Perdomo J, Leung HH, Ahmadi Z, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1–14. doi: https://doi.org/10.1038/s41467-019-09160-7
  41. Maugeri N, Capobianco A, Rovere-Querini P, et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci Transl Med. 2018;10:eaao3089. doi: https://doi.org/10.1126/scitranslmed.aao3089
  42. Qi H, Yang S, Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front Immunol. 2017;8:928. doi: https://doi.org/10.3389/fimmu.2017.00928
  43. Wiseman SJ, Ralston SH, Wardlaw JM. Cerebrovascular disease in rheumatic diseases: a systematic review and meta-analysis. Stroke. 2016;47:943–950. doi: https://doi.org/10.1161/STROKEAHA.115.012052
  44. Agca R, Heslinga S, Rollefstad S, et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017;76(1):17–28. doi: http://dx.doi.org/10.1136/annrheumdis-2016-209775
  45. Ali RA, Gandhi AA, Meng H, et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nature Commun. 2019;10:1–12. doi: https://doi.org/10.1038/s41467-019-09801-x
  46. Knight JS, Meng H, Coit P, et al. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight. 2017;2(18):e93897. doi: https://doi.org/10.1172/jci.insight.93897
  47. Weeding E, Coit P, Yalavarthi S, et al. Genome-wide DNA methylation analysis in primary antiphospholipid syndrome neutrophils. Clin Immunol. 2018;196:110–116. doi: https://doi.org/10.1016/j.clim.2018.11.011
  48. Sharma A, McCann K, Tripathi JK, et al. Tamoxifen restores extracellular trap formation in neutrophils from patients with chronic granulomatous disease in a reactive oxygen species–independent manner. J Allergy Clin Immunol. 2019;144(2):597–600.e593. doi: https://doi.org/10.1016/j.jaci.2019.04.014
  49. Papagoras C, Chrysanthopoulou A, Mitsios A, et al. Autophagy inhibition in adult-onset Still’s disease: still more space for hydroxychloroquine? Clin Exp Rheumatol. 2017;35 Suppl 108 (6):133–134.
  50. Belizna C, Pregnolato F, Abad S, et al. HIBISCUS: Hydroxychloroquine for the secondary prevention of thrombotic and obstetrical events in primary antiphospholipid syndrome. Autoimmunity Reviews. 2018;17:1153–1168. doi: https://doi.org/10.1016/j.autrev.2018.05.012
  51. Manfredi AA, Rovere-Querini P, D’Angelo A, Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res. 2017;123:146–156. doi: https://doi.org/10.1016/j.phrs.2016.08.008
  52. Van Avondt K, Maegdefessel L, Soehnlein O. Therapeutic targeting of neutrophil extracellular traps in atherogenic inflammation. Thromb Haemost. 2019;119(4):542–552. doi: https://doi.org/10.1055/s-0039-1678664
  53. Mastellos DC, Reis ES, Ricklin D, et al. Complement C3-targeted therapy: replacing long-held assertions with evidence-based discovery. Trends Immunol. 2017;38(6):383–394. doi: https://doi.org/10.1016/j.it.2017.03.003
  54. Boone BA, Murthy P, Miller-Ocuin J, Doerfler WR, Ellis JT, Liang X, et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps. BMC Cancer. 2018;18:678. doi: https://doi.org/10.1186/s12885-018-4584-2
  55. Skendros P, Chrysanthopoulou A, Rousset F, al. Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps. J Allergy Clin Immunol. 2017;140(5):1378–1387.e1313. doi: https://doi.org/10.1016/j.jaci.2017.02.021
  56. Mauracher LM, Posch F, Martinod K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508–518. doi: https://doi.org/10.1111/jth.13951.

Supplementary files

Supplementary Files
1. Fig. 1. Suicidal netosis

Download (219KB)
2. Fig. 2. Vital netosis

Download (274KB)
3. Fig. 3. Potential targets for therapy of thromboinflammatory diseases mediated by neutrophils and NETs

Download (112KB)



Abstract: 371

PDF (Russian): 4

Article Metrics

Metrics Loading ...



Copyright (c) 2021 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies