Vitamin D Effects on Guided Bone Regeneration and Osseointegration of Dental Implants (Literature Review)

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Background. Due to the prevalence of Vitamin D deficiency as well as the frequency of reconstructive surgical interventions followed by dental implantation, the issue arises concerning the effect of Vitamin D on reparative regeneration of bone and osseointegration of dental implants. The purpose — using literature data we are conducting an impact assessment of vitamin D on reparative regeneration of bone tissue, in particular, after oral reconstruction surgeries and dental implantation. Methods. Retrieval, systematization and analysis of scientific data on application of vitamin D supplementation and its effect on reparative regeneration of jaw bone tissue. The conclusions. For the most part, the positive effect exerted on reparative regeneration of jaw bone tissue and osseointegration of dental implants is due to the role of vitamin D in physiological processes evolving in bone tissue, namely maintenance of calcium and phosphate exchange through intestinal absorption and TNFα, RANKL (Receptor activator of nuclear factor kappa-B ligand) and consequently differentiation of precursors to osteoclasts into osteoclasts through VDR stimulation (Vitamin D Receptor) – receptors for further osteogenesis. Also, according to literature data, FGF23 (Fibroblast Growth Factor) protein is a marker of osteoblasts differentiation into osteocytes, it is also known that FGF23 and 1,25(ОН)2D3 are genetically related. FGF23 is the main regulator of both phosphate exchange in bones and metabolism of vitamin D and its metabolites. Besides, indirect anti-inflammatory effect has been observed thanks to inhibition of pro-inflammatory cytokine secretion. Taking into account the abovementioned data, of particular relevance is the definition of serum concentration 25(ОН)D and development of schemes of vitamin D level pre-surgery correction in patients, who have to undergo oral reconstruction surgeries and dental implantation. Mass spectrometry is a promising diagnostic method for determining the level of vitamin D in a body, as it allows to identify the actual amount of vitamin D free from admixture of other steroid hormones. The introduction of this method into clinical practice will allow to monitor the level of vitamin D in patients, receiving reconstructive and rehabilitative treatment.


Full Text

Restricted Access

About the authors

Sergey Yu. Ivanov

Peoples Friendship University of Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: syivanov@yandex.ru
ORCID iD: 0000-0001-5458-0192
SPIN-code: 2607-2679

Russian Federation, Moscow

MD, PhD, Professor, Corresponding Member of the RAS

Svetlana Yu. Kalinchenko

Peoples Friendship University of Russia

Email: kalinchenko@list.ru
ORCID iD: 0000-0002-4873-667X
SPIN-code: 2886-2617

Russian Federation, Moscow

MD, PhD, Professor

Nidjat A. Guseynov

Peoples Friendship University of Russia

Email: nid.gus@mail.ru
ORCID iD: 0000-0001-7160-2023
SPIN-code: 9417-7948

Russian Federation, Moscow

Clinical Resident

Aleksander A. Muraev

Peoples Friendship University of Russia

Email: muraev_aa@pfur.ru
ORCID iD: 0000-0003-3982-5512
SPIN-code: 1431-5936

Russian Federation, Moscow

MD, PhD, Professor

Aigul Т. Safi

Peoples Friendship University of Russia

Author for correspondence.
Email: ezhik_0209@mail.ru
ORCID iD: 0000-0002-4947-1546

Russian Federation, Moscow

PhD Student

Kirill A. Polyakov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: 79067170999@yandex.ru
ORCID iD: 0000-0001-5056-7409
SPIN-code: 2615-7225

Russian Federation, Moscow

MD, PhD, Associate Professor

Anastasiya S. Smykalova

Moscow State University of Medicine and Dentistry Named after A.I. Evdokimov

Email: Smykaloffa@gmail.com
ORCID iD: 0000-0002-7829-2096
SPIN-code: 5669-1222

Russian Federation, Moscow

PhD Student

References

  1. Sgambato D, Gimigliano F, De Musis C, et al. Bone alterations in inflammatory bowel diseases. World J Clin Cases. 2019;7(15):1908–1925. doi: https://doi.org/10.12998/wjcc.v7.i15.1908
  2. John HC St, Bishop KA, Meyer MB, et al. The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone. Mol Endocrinol. 2014;28(7):1150–1165. doi: https://doi.org/10.1210/me.2014-1091
  3. Yamamoto H, Ramos-Molina B, Lick AN, et al. Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition. Bone. 2016;84:120–130. doi: https://doi.org/10.1016/j.bone.2015.12.055
  4. Blau JE, Collins MT. The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord. 2015;16(2):165–174. doi: https://doi.org/10.1007/s11154-015-9318-z
  5. Бондаренко Н.А., Бондаренко Т.Н., Виниченко Е.Л., Перова Н.Ю. Диагностика актуального состояния пациента как фактора эффективности дентальной имплантации в критериях качества жизни // Международный журнал прикладных и фундаментальных исследований. — 2015. — № 3 (4). — С. 508–511. [Bondarenko NA, Bondarenko TN, Vinichenko EL, Perova NYu. Diagnostics of patient’s relevant condition as a factor of dental implantation’s effectiveness in the life quality criteria. International journal of applied and fundamental research. 2015;3(4):508–511. (In Russ.)] doi: https://doi.org/10.1075/lplp.19.3.18ahl
  6. Sargolzaie N, Moeintaghavi A, Shojaie H. Comparing the Quality of Life of Patients Requesting Dental Implants before and after Implant. Open Dent J. 2017;11(1):485–491. doi: https://doi.org/10.2174/1874210601711010485
  7. Мураев А.А. Инновационная российская система дентальных имплантатов: разработка, лабораторные исследования и клиническое внедрение: дис. … д-ра мед. наук. — М.; 2019. [Muraev AA. Innovacionnaya rossijskaya sistema dental’nyh implantatov: razrabotka, laboratornye issledovaniya i klinicheskoe vnedrenie. [dissertation] Moscow; 2019. (in Russ.)]
  8. Иванов С.Ю., Мураев А.А., Ямуркова Н.Ф. Реконструктивная хирургия альвеолярной кости. — М.: ГОЭТАР, 2016. — 360 с. [Ivanov SYu, Muraev AA, Yamurkova NF. Rekonstruktivnaya hirurgiya al’veolyarnoj kosti. Moscow: GOETAR; 2016. 360 s. (In Russ.)]
  9. Муллоджанов Г.Э., Ашуров Г.Г. К вопросу об определении нуждаемости больных в имплантационном лечении окклюзионных дефектов при разнонаправленных межсистемных нарушениях // Вестник Академии медицинских наук Таджикистана. — 2017. — Т. 23. – № 3. — С. 69–73. [Mullodzhanov GE, Ashurov GG. To question about determination of the need patient in implant’s treatment of occlusion defects under different direction of betweensystem disorders. Bulletin of the Academy of Medical Sciences of Tajikistan. 2017;3(23):69–73 (In Taj.)]
  10. Волков А.В., Антонов Е.Н., Васильев А.В., и др. Влияние противовоспалительных препаратов на регенерацию костной ткани при трансплантации мультипотентных мехзенхимальных стромальных клеток // Биомедицина. — 2014. — № 4. — С. 17–24. [Volkov AV, Antonov EN, Vasil’ev AV, et al. Effect of anti-inflammatory drugs on bone regeneration by transplantation of multipotent mesenchymal stromal cells. Biomedicine. 2014;4:17–24. (In Russ.)]
  11. Ямуркова Н.Ф. Оптимизация хирургического лечения при выраженной атрофии альвеолярного отростка верхней челюсти и альвеолярной части нижней челюсти перед дентальной имплантацией: дис. … д-ра мед. наук. — Н. Новгород, 2015. [Yamurkova NF. Optimizaciya hirurgicheskogo lecheniya pri vyrazhennoj atrofii al’veolyarnogo otrostka verhnej chelyusti i al’veolyarnoj chasti nizhnej chelyusti pered dental’noj implantaciej. [dissertation] N. Novgorod; 2015 (In Russ.)]
  12. Pellegrini G, Francetti L, Barbaro B, Del Fabbro M. Novel surfaces and osseointegration in implant dentistry. J Investig Clin Dent. 2018;9(4):e12349. doi: https://doi.org/10.1111/jicd.12349
  13. Эйзенбраун О.В. Применение туннельной техники костной пластики у пациентов с атрофией костной ткани челюстей: дис. … д-ра мед. наук. — М., 2018 [Ejzenbraun OV. Primenenie tunnel’noj tekhniki kostnoj plastiki u pacientov s atrofiej kostnoj tkani chelyustej. [dissertation] Moscow; 2018 (In Russ.)]
  14. Aghaloo T, Pi-Anfruns J, Moshaverinia A, et al. The Effects of Systemic Diseases and Medications on Implant Osseointegration: A Systematic Review. Int J Oral Maxillofac Implants. 2019;34:s35–s49. doi: https://doi.org/10.11607/jomi.19suppl.g3
  15. Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal Stromal Cell-Based Bone Regeneration Therapies: from Cell Transplantation and Tissue Engineering to Therapeutic Secretomes and Extracellular Vesicles. Front Bioeng Biotechnol. 2019;7:352. doi: https://doi.org/10.3389/fbioe.2019.00352
  16. Лаврищева Г.И. О первичном заживлении костных ран // Архив патологии. — 1965. — № 3. — С. 37–43. [Lavrishcheva GI. O pervichnom zazhivlenii kostnyh ran. Arhiv patologii. 1965;3:37–43. (In Russ.)]
  17. de Medeiros F, Kudo G, Leme BG, et al. Dental implants in patients with osteoporosis: a systematic review with meta-analysis. Int J Oral Maxillofac Surg. 2018;47(4):480–491. doi: https://doi.org/10.1016/j.ijom.2017.05.021
  18. Козлова М.В., Мкртумян А.М., Базикян Э.А., и др. Оценка эффективности применения дентальных имплантатов с кондиционированной поверхностью на основе гидроксида натрия у пациентов с остеопорозом // Стоматология. — 2019. — № 3 (98). — С. 46–51. [Kozlova MV, Mkrtumyan AM, Bazikyan EA, et al. Effect of dental implants with conditioned surface based on sodium hydroxide in patients with osteoporosis. Stomatology. 2019;3(98):46–51. (In Russ.)]
  19. Швырков М.Б. Стадийность регенерации кости и основы фармакологической коррекции репаративного остеогенеза нижней челюсти // Стоматология. — 2012. — № 91 (1). — С. 9–12. [Shvyrkov MB. Stages of bone regeneration and foundation of pharmacоlogical correction of the mandible reparative osteogenesis. Stomatology. 2012;91(1):9–12. (In Russ.)]
  20. Hong HH, Yen TH, Hong A, Chou TA. Association of vitamin D3 with alveolar bone regeneration in dogs. J Cell Mol Med. 2015;19(6):1208–1217. doi: https://doi.org/10.1111/jcmm.12460
  21. Schulze-Späte U, Dietrich T, Wu C, Wang K, Hasturk H, Dibart S. Systemic vitamin D supplementation and local bone formation after maxillary sinus augmentation — a randomized, double-blind, placebo-controlled clinical investigation. Clin Oral Implants Res. 2016;27(6):701–706. doi: https://doi.org/10.1111/clr.12641
  22. Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013;88(7):720–755. doi: https://doi.org/10.1016/j.mayocp.2013.05.011
  23. Ворслов Л.О., Тюзиков И.А., Калинченко С.Ю., и др. Квартет здоровья — новая концепция современной профилактической и эстетической медицины: витамин D, возможности внутреннего и наружного применения // Косметика & Медицина. — 2015. — № 4. — С. 34–43. [Vorslov LO, Tyuzikov IA, Kalinchenko SYu, et al. Kvartet zdorov’ya — novaya koncepciya sovremennoj profilakticheskoj i esteticheskoj mediciny: vitamin D, vozmozhnosti vnutrennego i naruzhnogo primeneniya. Kosmetika & Medicina. 2015;4:34–43. (In Russ.)]
  24. Пигарова Е.А. и др. Дефицит витамина D у взрослых: диагностика, лечение и профилактика: клинические рекомендации. — М., 2015. — 75 с. [Pigarova EA, et.al. Deficit vitamin D u vzroslyh: diagnostika, lechenie i profilaktika. Moscow; 2015. 75 p. (In Russ.)]
  25. Майлян Э.А., Резниченко Н.А., Майлян Д.Э. Регуляция Витамином D метаболизма костной ткани // Медицинский вестник Юга России. — 2017. — № 1. — С. 12–20. [Majlyan EA, Reznichenko NA, Majlyan DE. Vitamin D regulation of bone metabolism. Medical Bulletin of the South of Russia. 2017;(1):12–20 (In Russ.)] doi: https://doi.org/10.21886/2219-8075-2017-1-12-20
  26. Waskiewicz K, Oth O, Kochan N, Evrard L. Risk factors generally neglected in oral surgery and implantology: the high LDL-cholesterol and the insufficient level of Vitamin D. Rev Med Brux. 2018;39(2):70–77. doi: https://doi.org/10.30637/2018.17-075
  27. Калинченко С.Ю., Жиленко М.И., Гусакова Д.А., и др. СКС. Витамин Д и репродуктивное здоровье женщин // Проблемы репродукции. — 2016. — Т. 22. — № 4. — С. 28–36. [Kalinchenko SYu, Zhilenko MI, Gusakova DA, et al. SKS. Vitamin D and reproductive health of women. Russian Journal of Human Reproduction). 2016;22(4):28–36. (In Russ.)] doi: https://doi.org/10.17116/repro201622428-36
  28. Wolf G. The discovery of vitamin D: the contribution of Adolf Windaus. The Journal of Nutrition. 2004;134(6):1299–1302. doi: https://doi.org/10.1093/jn/134.6.1299
  29. Carpenter KJ. A short history of nutritional science: part 3 (1912–1944). J Nutr. 2003;133(10):3023–3032. doi: https://doi.org/10.1093/jn/133.10.3023
  30. Webb AR, Kline L, Holick MF. Influence of Season and Latitude on the Cutaneous Synthesis of Vitamin D3: Exposure to Winter Sunlight in Boston and Edmonton Will Not Promote Vitamin D3 Synthesis in Human Skin. J Clin Endocrinol Metab. 1988;67(2):373–378. doi: https://doi.org/10.1210/jcem-67-2-373
  31. Kitazawa S, Kajimoto K, Kondo T, Kitazawa R. Vitamin D3 supports osteoclastogenesis via functional vitamin D response element of human RANKL gene promoter. J Cell Biochem. 2003;89(4):771–777. doi: https://doi.org/10.1002/jcb.10567
  32. Wacker M, Holick MF. Vitamin D — effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;5(1):111–148. doi: https://doi.org/10.3390/nu5010111
  33. Струков В.И. Гипервитаминоз D и гиперкальциемические состояния. Когда кальций опасен?: монография. — Пенза: ГБОУ ДПО ПИУВ Минздрава России, 2014. — 194 с. [Strukov VI. Gipervitaminoz D i giperkal’ciemicheskie sostoyaniya. Kogda kal’cij opasen?: monografiya. Penza: GBOU DPO PIUV Minzdrava Rossii; 2014. 194 s. (In Russ.)]
  34. Захарова И.Н., Васильева С.В., Дмитриева Ю.А., Мозжухина М.В., Евсеева Е.А. Коррекция недостаточности витамина // Эффективная фармакология. — 2014. — № 3. — С. 38–43. [Zaharova IN, Vasil’eva SV, Dmitrieva YuA, Mozzhuhina MV, Evseeva EA. Treatment of vitamin D deficiency. Effective pharmacology. 2014;3:38–43. (In Russ.)]
  35. Мальцев С., Мансурова Г. Метаболизм витамина D и пути реализации его основных функций // Практическая медицина. — 2014. — № 9 (85). — С. 12–18. [Mal’cev S, Mansurova G. Metabolism of vitamin D and means of its main functions’ implementation. Practical medicine. 2014;9(85):12–18. (In Russ.)]
  36. Mangano F, Ghertasi Oskouei S, Paz A, et al. Low serum vitamin D and early dental implant failure: Is there a connection? A retrospective clinical study on 1740 implants placed in 885 patients. J Dent Res Dent Clin Dent Prospects. 2018;12(3):174–182. doi: https://doi.org/10.15171/joddd.2018.027
  37. Fretwurst T, Grunert S, Woelber JP, et al. Vitamin D deficiency in early implant failure: two case reports. Int J Implant Dent. 2016;2(1):4–9. doi: https://doi.org/10.1186/s40729-016-0056-0
  38. Ketoff S, Sigaux N, Raberin M, Bouletreau P. Dental complications during orthodontic preparation and orthognathic surgery. Orthod Fr. 2018;89(2):137–144. doi: https://doi.org/10.1051/orthodfr/2018010
  39. Iosub Ciur MD, Zetu IN, Haba D, Viennot S, Bourgeois D, Andrian S. Evaluation of the Influence of Local Administration of Vitamin D on the Rate of Orthodontic Tooth Movement. Rev Med Chir Soc Med Nat Iasi. 2016;120(3):694–699.
  40. Satué M, Monjo M, Ronold HJ, et al. Titanium implants coated with UV-irradiated vitamin D precursor and vitamin E: in vivo performance and coating stability. Clin Oral Implants Res. 2017;28(4):424–431. doi: https://doi.org/10.1111/clr.12815
  41. Linjawi AI, Abushal AM, Al-Zahrani AM, et al. Patients’ Perceptions to Reduced Orthodontic Treatment Time in Saudi Arabia. Patient Prefer Adherence. 2019;13:1973–1981. doi: https://doi.org/10.2147/PPA.S222181
  42. Collins MK, Sinclair PM. The local use of vitamin D to increase the rate of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 1988;94(4):278–284. doi: https://doi.org/10.1016/0889-5406(88)90052-2
  43. Селезнев Д.А. Обоснование местного применения альфакальцидола при интрузионном перемещении зубов // Образовательный вестник «Сознание». — 2010. — Т. 12. – № 1. — С. 36–37. [Seleznev DA. The efficacy of local administration of alfacalcidol for intrusion tooth movement. Educational bulletin “Consciousness”. 2010;12(1):36–37. (In Russ.)]
  44. Kale S, Kocadereli I, Atilla P, et al. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2004;125(5):607–614. doi: https://doi.org/10.1016/j.ajodo.2003.06.002
  45. Barik A, Chakravorty N. Targeted Drug Delivery from Titanium Implants: A Review of Challenges and Approaches. Adv Exp Med Biol. 2020;1251:1–17. doi: https://doi.org/10.1007/5584_2019_447
  46. Wagner F, Schuder K, Hof M, et al. Does osteoporosis influence the marginal peri-implant bone level in female patients? A cross-sectional study in a matched collective. Clin Implant Dent Relat Res. 2017;19(4):616–623. doi: https://doi.org/10.1111/cid.12493
  47. Jagelavičienė E, Vaitkevičienė I, Šilingaitė D, et al. The Relationship between Vitamin D and Periodontal Pathology. Medicina (Kaunas, Lithuania). 2018;54(3):45. doi: https://doi.org/10.3390/medicina54030045
  48. Siervo M, Riley HL, Fernandez BO, et al. Caudwell Xtreme Everest Research Group. Effects of prolonged exposure to hypobaric hypoxia on oxidative stress, inflammation and gluco-insular regulation: the not-so-sweet price for good regulation. PloS One. 2014;9(4):e94915. doi: https://doi.org/10.1371/journal.pone.0094915
  49. Xiong Y, Zhang Y, Guo Y, et al. 1α,25-Dihydroxyvitamin D3 increases implant osseointegration in diabetic mice partly through FoxO1 inactivation in osteoblasts. Biochem Biophys Res Commun. 2017;494(3–4):626–633. doi: https://doi.org/10.1016/j.bbrc.2017.10.024
  50. Панахов Н.А., Махмудов Т.Г. Показатели костного метаболизма у пациентов с дентальными имплантатами // Стоматология. — 2019. — Т. 98. – № 6. — С. 56–59. [Panakhov NA, Makhmudov TG. The level of bone metabolism in patients with dental implants. Stomatology. 2019;98(4):56–59 (In Russ.)] doi: https://doi.org/10.17116/stomat20199804156
  51. Mucuk G, Sepet E, Erguven M, et al. 1,25-Dihydroxyvitamin D3 stimulates odontoblastic differentiation of human dental pulp-stem cells in vitro. Connect Tissue Res. 2017;58(6):531–541. doi: https://doi.org/10.1080/03008207.2016.1264395
  52. Yuan FN, Valiyaparambil J, Woods MC, et al. Vitamin D signaling regulates oral keratinocyte proliferation in vitro and in vivo. Int J Oncol. 2014;44(5):1625–1633. doi: https://doi.org/10.3892/ijo.2014.2338
  53. Javed F, Rahman I, Romanos GE. Tobacco-product usage as a risk factor for dental implants. Periodontology 2000. 2019;81(1):48–56. doi: https://doi.org/10.1111/prd.12282
  54. Gürlek Ö, Gümüş P, Nile CJ, et al. Biomarkers and Bacteria Around Implants and Natural Teeth in the Same Individuals. J Periodontol. 2017;88(8):752–761. doi: https://doi.org/10.1902/jop.2017.160751
  55. Andrukhov O, Andrukhova O, Hulan U, et al. Both 25-hydroxyvitamin-D3 and 1,25-dihydroxyvitamin-D3 reduces inflammatory response in human periodontal ligament cells. PLoS One. 2014;9(2):e90301. doi: https://doi.org/10.1371/journal.pone.0090301
  56. Мокрова Е.А. Медикаментозная коррекция недостаточности витамина Д у пациентов с хроническим пародонтитом как компонент комплексного лечения // Научный альманах. — 2015. — № 9 (11). — С. 962–965. [Mokrova EA. Drug correction of vitamin D deficiency in patients with chronic periodontitis by the complex as a component of treatment. Nauchniy Al'manakh. 2015;9(11): 962–965. (In Russ.)] doi: https://doi.org/10.17117/na.2015.09.962
  57. Oteri G, Cicciù M, Peditto M, et al. Does Vitamin D3 Have an Impact on Clinical and Biochemical Parameters Related to Third Molar Surgery. J Craniofac Surg. 2016;27(2):469–476. doi: https://doi.org/10.1097/SCS.0000000000002389
  58. Li H, Li W, Wang Q. 1,25-dihydroxyvitamin D3 suppresses lipopolysaccharide-induced interleukin-6 production through aryl hydrocarbon receptor/nuclear factor-κB signaling in oral epithelial cells. BMC Oral Health. 2019;19(1):236. doi: https://doi.org/10.1186/s12903-019-0935-x
  59. Hokugo A, Christensen R, Chung EM, et al. Increased prevalence of bisphosphonate-related osteonecrosis of the jaw with vitamin D deficiency in rats. J Bone Miner Res. 2010;25(6):1337–1349. doi: https://doi.org/10.1002/jbmr.23

Supplementary files

Supplementary Files Action
1.
Figure: 1. Calculation of the required daily dose of vitamin D depending on its level in the blood serum for an adult weighing 68 kg [27]

Download (318KB) Indexing metadata

Statistics

Views

Abstract - 379

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies