COVID-19: oxidative stress and the relevance of antioxidant therapy

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The emergence of viral respiratory pathogens with high pandemic potential, such as the SARS-CoV-2, poses a serious public health problem, with a very limited arsenal of effective tools and techniques to prevent and treat a new pandemic infection. The literature on the involvement of reactive oxygen species in the pathogenesis of coronavirus infections and the potential for antioxidant therapy was reviewed. Because of available evidence on the involvement of oxidative stress in the mechanisms of initiation and maintenance of homeostasis disorders in SARS-CoV-2, approaches combining reduction of ROS synthesis, inhibition of virus replication, anti-inflammatory action, reduction of hypoxia, and reduction of the toxic effects of drug therapy may be very effective. The hypothesis of the expediency of treating systemic inflammation aimed at “quenching” the cytokine “storm”, caused largely by the production of reactive oxygen species, seems essential. In this connection, it is pathophysiologically justified to use for prophylactic and therapeutic purposes antioxidant drugs, which have proven themselves on the example of other viral respiratory infections. Thus, the high activity of preparations of vitamin C, N-acetylcysteine, melatonin, quercetin, glutathione, astaxanthin, polyphenols, polyunsaturated fatty acids, etc. was noted. In addition, these drugs effectively protect the vascular wall, which has been proven for a number of cardiovascular diseases and that can be effective in developing with COVID-19 vasculitis. There is a more pronounced combined effect of these drugs, which is already used in treatment protocols for patients with SARS-CoV-2. Special attention should also be paid to the use of antioxidant drugs as a means to reduce the toxic manifestations of antiviral therapy. Thus, the use of drugs with antioxidant activity can be justified and will certainly improve the effectiveness of the fight against the pandemic of new coronavirus infection.

Full Text

Restricted Access

About the authors

Marina A. Darenskaya

Scientific Centre for Family Health and Human Reproduction Problems

Author for correspondence.
ORCID iD: 0000-0003-3255-2013
SPIN-code: 3327-4213

Russian Federation, 16 Timiryazeva str., 664003, Irkutsk


Lubov I. Kolesnikova

Scientific Centre for Family Health and Human Reproduction Problems

ORCID iD: 0000-0003-3354-2992
SPIN-code: 1584-0281

Russian Federation, 16 Timiryazeva str., 664003, Irkutsk

MD, PhD, Professor

Sergey I. Kolesnikov

Scientific Centre for Family Health and Human Reproduction Problems

ORCID iD: 0000-0003-2124-6328
SPIN-code: 1752-6695

Russian Federation, 16 Timiryazeva str., 664003, Irkutsk

MD, PhD, Professor


  1. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020:105924. doi: 10.1016/j.ijantimicag.2020.105924.
  2. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648.
  3. Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 2017;17:608–620. doi: 10.1038/nri.2017.66.
  4. Sies H. Oxidative eustress and oxidative distress: Introductory remarks. In: Oxidative Stress. Academic Press; 2020. doi: 10.1016/B978-0-12-818606-0.00001-8.
  5. Hosakote YM, Rayavara K. Respiratory Syncytial Virus-Induced Oxidative Stress in Lung Pathogenesis. In: Oxidative Stress in Lung Diseases. Singapore: Springer; 2020. P. 297–330. doi: 10.1007/978-981-32-9366-3_13.
  6. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses. 2018;10(8):392. doi: 10.3390/v10080392.
  7. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology. 2019;17(3):181–192. doi: 10.1038/s41579-018-0118-9
  8. Щелканов М.Ю., Попова А.Ю., Дедков В.Г., и др. История изучения и современная классификация коронавирусов (Nidovirales: Coronaviridae) // Инфекция и иммунитет. — 2020. (В печати). [Shhelkanov MJu, Popova AJu, Dedkov VG, et al. History of investigation and current classification of coronaviruses (Nidovirales: Coronaviridae). Russian Journal of Infection and Immunity. 2020. (In Press). (In Russ.)] doi: 10.15789/2220-7619-HOI-1412.
  9. De Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87:7790–7792. doi: 10.1128/JVI.01244-13.
  10. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
  11. Zhou P, Yang X‐L, Wang X‐G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. Preprint at BioRxiv. 2020. doi: 10.1101/2020.01.22.914952.
  12. Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 2020;81:104–260.
  13. Смирнов В.С., Тотолян А.А. Врожденный иммунитет при коронавирусной инфекции // Инфекция и иммунитет. — 2020. (В печати). [Smirnov VS, Totolyan AA. Innate immunity in coronavirus infection. Russian Journal of Infection and Immunity. 2020 (In Press). (In Russ.)] doi: 10.15789/2220-7619-III-1440.
  14. Borges do Nascimento IJ, Cacic N, Abdulazeem HM, et al. Novel Coronavirus Infection (COVID-19) in Humans: a Scoping Review and Meta-Analysis. J Clin Med. 2020;9(4):941. doi: 10.3390/jcm9040941.
  15. Wang K, Chen W, Zhou YS, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020. doi: 10.1101/2020.03.14.988345.
  16. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052.
  17. Ziegler CG, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020. doi: 10.1016/j.cell.2020.04.035.
  18. Zhao C, Zhao W. NLRP3 Inflammasome — a Key Player in Antiviral Responses. Frontiers in immunology. 2020;11:211. doi: 10.3389/fimmu.2020.00211.
  19. Sánchez-Rodríguez R, Munari F, Angioni R, et al. Targeting monoamine oxidase to dampen NLRP3 inflammasome activation in inflammation. Cellular & Molecular Immunology. 2020;1–3. doi: 10.1038/s41423-020-0441-8.
  20. Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clinical Infectious Diseases. 2020. doi: 10.1093/cid/ciaa410.
  21. Zhang Y, Gao Y, Qiao L, et al. Inflammatory response cells during acute respiratory distress syndrome in patients with coronavirus disease 2019 (COVID-19). Annals of Internal Medicine. 2020. doi:
  22. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. Journal of Infection. 2020. doi: 10.1016/j.jinf.2020.03.005.
  23. Кубатов А.А., Дерябин Д.Г. Новый взгляд на патогенез COVID-19: заболевание является генерализованным вирусным васкулитом, а возникающее при этом поражение легочной ткани — вариантом ангиогенного отека легкого // Вестник РАМН. — 2020. — Т. 75. — № 2. (В печати). [Kubatov AA, Derjabin DG. A new look at the pathogenesis of COVID-19: the disease is a generalized viral vasculitis, and the resulting damage to the lung tissue is a variant of angiogenic pulmonary edema. Annals of the Russian Academy of Medical Science. 2020;75(2). (In Press). (In Russ.)]
  24. Щелканов М.Ю., Колобухина Л.В., Бургасова О.А, и др. COVID-19: этиология, клиника, лечение // Инфекция и иммунитет. — 2020. (В печати). [Shhelkanov MJu, Kolobuhina LV, Burgasova OA, et al. COVID-19: etiology, clinic, treatment. Russian Journal of Infection and Immunity. 2020 (In Press). (In Russ.)] doi: 10.15789/2220-7619-CEC-1473.
  25. Смирнов В.С., Тотолян А.А. Некоторые возможности иммунотерапии при коронавирусной инфекции // Инфекция и иммунитет. — 2020. (В печати). [Smirnov VS, Totolyan AA. Some possibilities of immunotherapy in coronavirus infection. Russian Journal of Infection and Immunity. 2020 (In Press). (In Russ.)] doi: 10.15789/2220-7619-SPO-1470.
  26. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395(10229):1033–1034. doi:
  27. Delgado-Roche L, Mesta F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) infection. Archives of Medical Research. Forthcoming. 2020. doi: 10.1016/j.arcmed.2020.04.019.
  28. Komaravelli N, Casola A. Respiratory Viral Infections and Subversion of Cellular Antioxidant Defenses. J Pharmacogenomics Pharmacoproteomics. 2014;5(4):1000141. doi: 10.4172/2153-0645.1000141.
  29. Shao H, Lan D, Duan Z, et al. Upregulation of mitochondrial gene expression in PBMC from convalescent SARS Patients. J Clin Immunol. 2006;26(6):546–554. doi: 10.1007/s10875-006-9046-y.
  30. Yuan X, Shan Y, Yao Z, et al. Mitochondrial location of severe acute respiratory syndrome coronavirus 3b protein. Mol Cells. 2006:21(2):186–191.
  31. Wu S, Gao J, Ohlemeyer C, et al. Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes. Free Radic Biol Med. 2005;39(12):1601–1610. doi: 10.1016/j.freeradbiomed.2005.08.006.
  32. Li Q, Wang L, Dong C, et al. The interaction of the SARS coronavirus non-structural protein 10 with the cellular oxido-reductase system causes an extensive cytopathic effect. J Clin Virol. 2005;34(2):133–139. doi: 10.1016/j.jcv.2004.12.019.
  33. Vijay R, Hua X, Meyerholz DK, et al. Critical role of phospholipase A2 group IID in age-related susceptibility to severe acute respiratory syndrome — CoV infection. J Exper Med. 2015;212(11):1851–1868. doi: 10.1084/jem.20150632.
  34. Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235–249. doi: 10.1016/j.cell.2008.02.043.
  35. Lin CW, Lin KH, Hsieh TH, et al. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunology & Medical Microbiology. 2006;46(3):375–380. doi: 10.1111/j.1574-695X.2006.00045.x.
  36. Mizutani T, Fukushi S, Saijo M, et al. Importance of Akt signaling pathway for apoptosis in SARS-CoV-infected Vero E6 cells. Virology. 2004;327(2):169–174. doi: 10.1016/j.virol.2004.07.005.
  37. Van den Brand JMA, Haagmans BL, van Riel D, et al. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 2014;151(1):83–112. doi: 10.1016/j.jcpa.2014.01.004.
  38. Smits SL, de Lang A, van den Brand JM, et al. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathogens. 2010;6(2):e1000756. doi: 10.1371/journal.ppat.1000756.
  39. Chung HY, Sung B, Jung KJ, et al. The molecular inflammatory process in aging. Antioxidants and Redox Signaling. 2006;8:572e581. doi: 10.1089/ars.2006.8.572
  40. Petrakis D, Margină D, Tsarouhas K, et al. Obesity a risk factor for increased COVID 19 prevalence, severity and lethality (Review). Molecular Medicine Reports. 2020;22(1):9–19. doi: 10.3892/mmr.2020.11127.
  41. Колесникова Л.И., Даренская М.А., Колесников С.И. Свободнорадикальное окисление: взгляд патофизиолога // Бюллетень сибирской медицины. — 2017. — Т. 16. — № 4. — С. 16–29. [Kolesnikova LI, Darenskaya MA, Kolesnikov SI. Free radical oxidation: a pathophysiologist’s view. Byulleten’ sibirskoj mediciny. 2017;16(4):16–29. (In Russ.)] doi: 10.20538/1682-0363-2017-4-16-29.
  42. Колесникова Л.И., Колесников С.И., Даренская М.А., и др. Оценка про- и антиоксидантного статуса у женщин с ВИЧ и коинфекцией // Терапевтический архив. — 2016. — Т. 88. — № 11. — С. 17–21. [Kolesnikova LI, Kolesnikov SI, Darenskaya MA, et al. Assessment of pro- and antioxidant status in women with HIV and co-infection. Terapevticheskij arhiv. 2016;88(11):17–21. (In Russ.)] doi: 10.17116/terarkh2016881117-2.1.
  43. Галкин А.А., Демидова В.С. Центральная роль нейтрофилов в патогенезе синдрома острого повреждения легких (острый респираторный дистресс-синдром) // Успехи современной биологии. — 2014. — Т. 134. — № 4. — C. 377–394. [Galkin AA, Demidova VS. The central role of neutrophils in the pathogenesis of acute lung injury syndrome (acute respiratory distress syndrome). Uspehi sovremennoj biologii. 2014;134(4):377–394. (In Russ.)]
  44. Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Medicine in Drug Discovery, 2020;5:100028. doi: 10.1016/j.medidd.2020.100028.
  45. Boretti A, Banik BK. Intravenous Vitamin C for reduction of cytokines storm in Acute Respiratory Distress Syndrome. Pharmanutrition. 2020:100190. doi: 10.1016/j.phanu.2020.100190.
  46. Linani A, Benarous K, Yousfi M. Novel Structural Mechanism of Glutathione as a Potential Peptide Inhibitor to the Main Protease (Mpro): CoviD-19 Treatment, Molecular Docking and SAR Study. ChemRxiv. Preprint. 2020. (In Press). doi: 10.26434/chemrxiv.12153021.v1.
  47. Calder PC, Carr AC, Gombart A, Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients. 2020;12(4):1181. doi: 10.3390/nu12041181.
  48. Wimalawansa SJ. COVID-19 might be fought by 2 doses of Vitamin D (200,000-300,000 IU each) — Feb 2020. European Journal of Biomedical and Pharmaceutical Sciences. 2020;7(3):432–438.
  49. Zhang Y, Ding S, Li C, et al. Effects of N-acetylcysteine treatment in acute respiratory distress syndrome: A meta-analysis. Exp. Ther. Med. 2017;14:2863–2868. doi: 10.3892/etm.2017.4891.
  50. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020;35(1):145–151. doi: 10.1080/14756366.2019.1690480.
  51. Mani JS, Johnson JB, Steel IS, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Research. 2020;284:197989. doi: 10.1016/j.virusres.2020.197989.
  52. Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids. 2020;52(3):329–360. doi: 10.1007/s00726-020-02823-6.
  53. Shneider A, Kudriavtsev A, Vakhrusheva A. Can melatonin reduce the severity of COVID-19 pandemic? International Reviews of Immunology. 2020. (In Press). doi: 10.1080/08830185.2020.1756284.
  54. Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN. 2020:1–7. doi: 10.2139/ssrn.3527420.
  55. Adikwu E, Brambaifa N, Obianime WA. Melatonin and alpha lipoic acid restore electrolytes and kidney morphology of lopinavir/ritonavir-treated rats. J Nephropharmacol. 2019;9(1):e06. doi: 10.15171/npj.2020.06.
  56. Мадаева И.М., Данусевич И.Н., Жамбалова Р.М., Колесникова Л.И. Мелатонин в терапии нарушений сна при возрастном эстрогендефицитном состоянии // Журнал неврологии и психиатрии им. C.C. Корсакова. — 2017. — Т. 117. — № 5. — С. 81–84. [Madaeva IM, Danusevich IN, Zhambalova RM, Kolesnikova LI. Melatonin in the treatment of sleep disorders with age-related estrogen deficiency. Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2017;117(5):81–84. (In Russ.)] doi: 10.17116/jnevro20171175181-84.
  57. Costa JAV, Moreira JB, Fanka LS, et al. Microalgal biotechnology applied in biomedicine. In: Handbook of Algal Science, Technology and Medicine. Academic Press; 2020. P. 429–439.
  58. Alamdari H, Moghaddam DB, Amini AS, et al. The Application of a Reduced Dye Used in Orthopedics as a Novel Treatment against Coronavirus (COVID-19): A Suggested Therapeutic Protocol. The Archives of Bone and Joint Surgery. 2020;8:(Covid-19 Special Issue):291–294. doi: 10.22038/abjs.2020.47745.2349.
  59. Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain, Behavior, and Immunity. 2020. (In Press). doi: 10.1016/j.bbi.2020.04.040.
  60. EVMS Critical Care COVID-19 Management Protocol 05-14-2020 Available from:

Supplementary files

There are no supplementary files to display.



Abstract - 102

PDF (Russian) - 0




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies