COVID-19, septic shock and syndrome of disseminated intravascular coagulation syndrome. Part 2

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


The article discusses the issues of hemostatic system disorders in patients with COVID-19. Strengthening the coagulopathy characteristic of DIC-syndrome, is a key sign of deterioration and an unfavorable prognosis in COVID-19 patients. Data obtained by Chinese colleagues demonstrates that a significantly increased level of D-dimer is one of the predictors of death. The article also highlights the preliminary recommendations of the International society of Thrombosis and Hemostasis (ISTH, 2020) to identify markers such as D-dimer, prothrombin time and platelet count as significant predictive markers in severe COVID-19 patients. The necessity of anticoagulant therapy in hospitalized patients is justified. The article discusses the features of sepsis in pregnant women. Data from a meta-analysis of 19 studies evaluating pregnancy complications and outcomes in patients with various coronavirus infections are presented. Despite the complicated course of pregnancy, there were no cases of vertical transmission of viral infection. In the pathogenesis of severe COVID-19 complications with the formation of severe acute respiratory distress syndrome, multi-organ dysfunction, super inflammation and cytokine storm play a leading role. In connection with viral sepsis, the article discusses the role of hemophagocytic lymphohistiocytosis as a hyperinflammatory syndrome characterized by fulminant and fatal hypercytokinemia with multiple organ failure, the role of hyperferritinemia in predicting the outcomes of severe sepsis. Groups of patients at high risk of death are discussed, as well as the need for anticoagulant and anti-cytokine therapy in patients with COVID-19.


Full Text

Restricted Access

About the authors

Victoria O. Bitsadze

The First I.M. Sechenov Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-code: 5930-0859

Russian Federation, Trubetskaya str. 8-2, 119991 Moscow

MD, PhD, Professor

Jamilya Kh. Khizroeva

The First I.M. Sechenov Moscow State Medical University (Sechenov University)

Email: jamatotu@gmail.com
ORCID iD: 0000-0002-0725-9686
SPIN-code: 8225-4976

Russian Federation, Moscow

MD, PhD, Professor

Alexander D. Makatsariya

The First I.M. Sechenov Moscow State Medical University (Sechenov University)

Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-code: 7538-2966

Russian Federation, Moscow

MD, PhD, Professor

Ekaterina V. Slukhanchuk

Petrovsky National Research Center of Surgery

Email: beloborodova@rambler.ru
ORCID iD: 0000-0001-7441-2778
SPIN-code: 7423-8944

Russian Federation, Moscow

MD, PhD, Assistant Professor

Maria V. Tretyakova

Medical Center LLC

Email: tretyakova777@yandex.ru
ORCID iD: 0000-0002-3628-0804

Russian Federation, Moscow

MD, PhD, Assistant Professor

Giuseppe Rizzo

The First I.M. Sechenov Moscow State Medical University (Sechenov University); University of Roma Tor Vergata

Email: giuseppe.rizzo@uniroma2.it
ORCID iD: 0000-0002-5525-4353

Russian Federation, Moscow; Rome

MD, PhD, Professor

Jean-Christophe Gris

The First I.M. Sechenov Moscow State Medical University (Sechenov University); University Montpellier

Email: jean.christophe.gris@chu-nimes.fr
ORCID iD: 0000-0002-9899-9910

France, Moscow; Montpellier

MD, PhD, Professor

Ismail Elalamy

The First I.M. Sechenov Moscow State Medical University (Sechenov University); Medicine Sorbonne University, University Hospital Tenon

Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368

France, Moscow; Paris

MD, PhD, Professor

Vladimir N. Serov

National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov

Email: v_serov@oparina4.ru
ORCID iD: 0000-0003-2976-7128

Russian Federation, Moscow

MD, PhD, Professor

Andrei S. Shkoda

LA Vorokhobov City Clinical Hospital 67

Email: 67gkb@mail.ru
ORCID iD: 0000-0002-9783-1796

Russian Federation, Moscow

MD, PhD

Natalia V. Samburova

The First I.M. Sechenov Moscow State Medical University (Sechenov University)

Email: nsamburova@bk.ru
ORCID iD: 0000-0002-4564-8439
SPIN-code: 9084-7676

Russian Federation, Moscow

MD, PhD, Assistant Professor

References

  1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844−847. doi: 10.1111/jth.14768.
  2. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020. Online ahead of print. doi: 10.1111/jth.14810.
  3. Lippi G, Plebani M, Henry MB. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145−148. doi: 10.1016/j.cca.2020.03.022.
  4. Lin G-L, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018;9:2147. doi: 10.3389/fimmu.2018.02147.
  5. Hussain NY, Uriel A, Mammen C, Bonington A. Disseminated herpes simplex infection during pregnancy, rare but important to recognise. Qatar Med J. 2014;(1):61–64. doi: 10.5339/qmj.2014.11.
  6. Goodman ZD, Ishak KG, Sesterhenn IA. Herpes simplex hepatitis in apparently immunocompetent adults. Am J Clin Pathol. 1986;85(6):694–699. doi: 10.1093/ajcp/85.6.694.
  7. Escobar M, Nieto AJ, Loaiza-Osorio S, et al. Pregnant women hospitalized with chikungunya virus infection, Colombia, 2015. Emerg Infect Dis. 2017;23(11):1777–1783. doi: 10.3201/eid2311.170480.
  8. Acosta CD, Harrison DA, Rowan K, et al. Maternal morbidity and mortality from severe sepsis: a national cohort study. BMJ Open. 2016;6(8):e012323. doi: 10.1136/bmjopen-2016-012323.
  9. Sauerbrei A, Wutzler P. Herpes simplex and varicella-zoster virus infections during pregnancy: current concepts of prevention, diagnosis and therapy. Part 2: Varicella-zoster virus infections. Med Microbiol Immunol. 2007;196:95–102. doi: 10.1007/s00430-006-0032-z.
  10. Acosta CD, Knight M, Lee HC, et al. The continuum of maternal sepsis severity: incidence and risk factors in a population-based cohort study. PLoS ONE. 2013;8:e67175. doi: 10.1371/journal.pone.0067175.
  11. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980−2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–1544. doi: 10.1016/s0140-6736(16)31012-1.
  12. Acosta CD, Harrison DA, Rowan K, et al. Maternal morbidity and mortality from severe sepsis: a national cohort study. BMJ Open. 2016;6(8):e012323. doi: 10.1136/bmjopen-2016-012323.
  13. Mason KL, Aronoff DM. Postpartum group a Streptococcus sepsis and maternal immunology. Am J Reprod Immunol. 2012;67(2):91–100. doi: 10.1111/j.1600-0897.2011.01083.x.
  14. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221(1):80–87. doi: 10.1111/j.1749-6632.2010.05938.x.
  15. Benster B, Wood EJ. Immunoglobulin levels in normal pregnancy and pregnancy complicated by hypertension. J Obstet Gynaecol Br Commonw. 1970;77(6):518–522. doi: 10.1111/j.1471-0528.1970.tb03559.x.
  16. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–433. doi: 10.1111/j.1600-0897.2010.00836.x.
  17. Di Mascio D, Khalil A, Saccone G, et al. Outcome of Coronavirus spectrum infections (SARS, MERS, COVID -19) during pregnancy: a systematic review and meta-analysis. Online ahead of print. Am J Obstet Gynecol MFM. 2020;100107. doi: 10.1016/j.ajogmf.2020.100107.
  18. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet. 2014;383(9927):1503−1516. doi: 10.1016/S0140-6736(13)61048-X.
  19. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033−1034. doi: 10.1016/S0140-6736(20)30628-0.
  20. Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020;102538. doi: 10.1016/j.autrev.2020.102538.
  21. Seguin A, Galicier L, Boutboul D, et al. Pulmonary involvement in patients with hemophagocytic lymphohistiocytosis. Chest. 2016;149(5):1294–1301. doi: 10.1016/j.chest.2015.11.004.
  22. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497−506. doi: 10.1016/S0140-6736(20)30183-5.
  23. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. Online ahead of print. 2020;1−3. doi: 10.1007/s00134-020-05991-x.
  24. Nicastri E, Petrosillo N, Bartoli AT, et al. National institute for the infectious diseases “l. spallanzani” irccs. recommendations for COVID-19 clinical management. Inf Diseas Rep. 2020;12(1):8543. doi: 10.4081/idr.2020.8543.
  25. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immun Canc. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9.
  26. Eloseily E, Weiser P, Eloseily EM, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis Arthritis Rheum. 2020;72(2):326−334. doi: 10.1002/art.41103.
  27. Honore PM, Hoste E, Molnár Z, et al. Cytokine removal in human septic shock: where are we and where are we going? Ann Intensive Care. 2019;9(1):56. doi: 10.1186/s13613-019-0530-y.
  28. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30304-4.
  29. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400−402. doi: 10.1016/S1473-3099(20)30132-8.
  30. Belizna C, Pregnolato F, Abad S, et al. HIBISCUS: Hydroxychloroquine for the secondary prevention of thrombotic and obstetrical events in primary antiphospholipid syndrome. Autoimmun Rev. 2018;17(12):1153−1168. doi: 10.1016/j.autrev.2018.05.012.
  31. Torigoe M, Sakata K, Ishii A, et al. Hydroxychloroquine efficiently suppresses inflammatory responses of human class-switched memory B cells via Toll-like receptor 9 inhibition. Clin Immunol. 2018;195:1−7. doi: 10.1016/j.clim.2018.07.003.
  32. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16. doi: 10.1038/s41421-020-0156-0.
  33. Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci. 2015;2015:507151. doi: 10.1155/2015/507151.
  34. Bernard GR, Vincent JL, Laterre PF, et al. Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699−709. doi: 10.1056/NEJM200103083441001.
  35. Davidson BL, Geerts WH, Lensing AW. Low-dose heparin for severe sepsis. N Engl J Med. 2002;347(13):1036−1037. doi: 10.1056/NEJM200209263471316.
  36. Wen WX, Lee SY, Siang R, Ry K. Repurposing pentoxifylline for the treatment of fibrosis: an overview. Adv Ther. 2017;34(6):1245–1269. doi: 10.1007/s12325-017-0547-2.
  37. Romanelli RG, Caligiuri A, Carloni V, et al. Effect of pentoxifylline on the degradation of procollagen type I produced by human hepatic stellate cells in response to transforming growth factor‐β1. Br J Pharmacol. 1997;122(6):1047−1054. doi: 10.1038/sj.bjp.0701484.
  38. Yamashita CM, Dolgonos L, Zemans RL, et al. Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am J Pathol. 2011;179(4):1733–1745. doi: 10.1016/j.ajpath.2011.06.041.
  39. Liu X, Li Z, Liu S, et al. Therapeutic effects of dipyridamole on COVID-19 patients with coagulation dysfunction. Med Rxiv. 2020. doi: 10.1101/2020.02.27.20027557.
  40. Etulain J, Martinod K, Wong SL, et al. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126(2):242–246. doi: 10.1182/blood-2015-01-624023.
  41. Inui S, Fujikawa A, Jitsu M, et al. Chest CT findings in cases from the cruise ship “Diamond Princess” with Coronavirus Disease 2019 (COVID-19). Radiology: Cardiothoracic imaging. 2020;2(2):e204002. doi: 10.1148/ryct.2020200110.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 1028

PDF (Russian) - 961

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions

Comments on this article



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies