COVID-19, septic shock and syndrome of disseminated intravascular coagulation syndrome. Part 1

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The pandemic of a new coronavirus infection (Coronavirus Disease 2019, COVID-19) caused by SARS-CoV-2 became a real challenge to humanity and the medical community in 2020 and raised a number of medical, social and even philosophical questions. An almost avalanche-like increase in the number of infected people in a short time, due to the high contagiousness of viral infection, allowed us to identify groups of patients with mild, moderate and severe forms of the disease. Doctors around the world are faced with an acute problem of treating a large number of patients in critical conditions caused by COVID-19. From the currently available information on clinical cases of COVID-19, it follows that COVID-19 patients in critical condition have a clinical picture of disseminated intravascular coagulation (DIC), septic shock with the development of multiple organ failure. The first part of the article discusses the pathogenesis of non-specific universal biological responses of the body in critical condition ― from the Sanarelli-Schwartzman phenomenon to the DIC, septic shock, systemic inflammatory response syndrome and the so-called neutrophil extracellular traps (NETs). The questions of cytokine storm in severe forms of systemic inflammatory response syndrome (SIRS), the role of inflammation in the activation of coagulation, and the relationship between inflammation and thrombosis are discussed. Modern ideas about the mechanisms of so-called NETosis, their role in the occurrence of immunothrombosis and inflammation-induced thrombosis in autoimmune diseases ― vasculitis, antiphospholipid syndrome, and systemic lupus erythematosus is highlighted. The article discusses the possibility of participation of ADAMTS-13 metalloproteinase in the pathogenesis of multiple organ failure in severe endotheliopathy in patients with viral septic shock.

Full Text

Restricted Access

About the authors

Victoria O. Bitsadze

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
ORCID iD: 0000-0001-8404-1042
SPIN-code: 5930-0859

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

MD, PhD, Professor

Jamilya Kh. Khizroeva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

ORCID iD: 0000-0002-0725-9686
SPIN-code: 8225-4976
Scopus Author ID: 57194547147
ResearcherId: F-8384-2017
Mendeley Profile:

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

MD, PhD, Professor

Alexander D. Makatsariya

I.M. Sechenov First Moscow State Medical University (Sechenov University)

ORCID iD: 0000-0001-7415-4633
SPIN-code: 7538-2966

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

MD, PhD, Professor

Ekaterina V. Slukhanchuk

Petrovsky National Research Center of Surgery

ORCID iD: 0000-0001-7441-2778
2, Abrikosovsky pereulok, Moscow, 119991

MD, PhD, Assistant Professor

Maria V. Tretyakova

Medical Center LLC

ORCID iD: 0000-0002-3628-0804
Timura Frunze str.15/1, 119021, Moscow

MD, PhD, Assistant Professor

Giuseppe Rizzo

I.M. Sechenov First Moscow State Medical University (Sechenov University); University of Roma Tor Vergata

ORCID iD: 0000-0002-5525-4353
Scopus Author ID: 7102724281
ResearcherId: G-8234-2018

Russian Federation, Trubetskaya str. 8-2, 119991, Moscow; Ospedale Cristo Re 00167 Roma Italy

MD, PhD, Professor

Jean-Christophe Raymond Gris

I.M. Sechenov First Moscow State Medical University (Sechenov University); University Montpellier

ORCID iD: 0000-0002-9899-9910
Scopus Author ID: 7005114260

Russian Federation, Trubetskaya str. 8-2, 119991, Moscow; Place du Pr. Robert Debré 30039 Nîmes cédex 09

MD, PhD, Professor

Ismail Elalamy

I.M. Sechenov Moscow State Medical University (Sechenov University); Medicine Sorbonne University, University Hospital Tenon

ORCID iD: 0000-0002-9576-1368
Scopus Author ID: 7003652413

Russian Federation, Trubetskaya str. 8-2, 119991; rue de la Chine 75970 Paris Cédex 20, France

MD, PhD, Professor

Vladimir N. Serov

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov

ORCID iD: 0000-0003-2976-7128

Russian Federation, 117997, Moscow, Academician Oparina street, 4

MD, PhD, Professor

Andrei S. Shkoda

L.A. Vorokhobov City Clinical Hospital Sixty-seven

2/44, Salyama Adilya str., Moscow, 123423

MD, PhD, the head 

Natalia V. Samburova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

ORCID iD: 0000-0002-4564-8439
SPIN-code: 9084-7676
Scopus Author ID: 57208129705
8-2, Trubetskaya street, Moscow, 119992

MD, PhD, Assistant Professor


  1. Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020;e204783. doi: 10.1001/jama.2020.4783.
  2. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Intensive Care Med. 2020;1−34. doi: 10.1007/s00134-020-06022-5.
  3. Макацария А.Д., Акиньшина С.В., Бицадзе В.О., и др. Септический шок в акушерстве: новый взгляд на патогенез // Практическая медицина. ― 2012. ― №9. ― С. 11−23. [Makatsariya AD, Akinshina SV, Bitsadze VO, et al. Septic shock in obstetrics: a new look at the pathogenesis. Practical medicine. 2012;(9):11−23. (In Russ).]
  4. Руднов В.А., Кулабухов В.В. Сепсис-3: Обновленные ключевые положения, потенциальные проблемы и дальнейшие практические шаги // Вестник анестезиологии и реаниматологии. ― 2016. ― Т.13. ― №4. ― С. 4−11. [Rudnov VA, Kulabukhov VV. Sepsis-3: updated main definitions, potential problems and next practical steps. Messenger of Anesthesiology and resuscitation. 2016;13(4):4−11. (In Russ).] doi: 10.21292/2078-5658-2016-13-4-4-11.
  5. Sanarelli G. De la pathogenie du cholera. Le cholera experimental. Ann Inst Pasteur. 1924;38:11−72.
  6. Shwartzman G. Studies on bacillus typhosus toxic substances. I. Phenomenon of local skin reactivity to b. typhosus culture filtrate. J Exp Med. 1928;48(2):247−268. doi: 10.1084/jem.48.2.247.
  7. Chahin AB, Opal JM, Opal SM. Whatever happened to the Shwartzman phenomenon? Innate Immunity. 2018;24(8):466–479. doi: 10.1177/1753425918808008.
  8. Seegers WH. Blood clotting mechanisms: three basic reactions. Annual Review of Physiology. 1969;31(1):269−294. doi: 10.1146/
  9. McKay DG. Disseminated Intravascular Coagulation:: an intermediary mechanism of disease. New York: Hoeber Medical Division, Harper and Row; 1965. 493 р.
  10. Levi M, van der Poll T. A short contemporary history of disseminated intravascular coagulation. Semin Thromb Hemost. 2014;40(8):874−880. doi: 10.1055/s-0034-1395155.
  11. Levi M. Pathogenesis and diagnosis of disseminated intravascular coagulation. Int J Lab Hematol. 2018;40(Suppl 1):15−20. doi: 10.1111/ijlh.12830.
  12. Levi M, ten Cate H. Disseminated intravascular coagulation. N EngJ Med. 1999;341(8):586−592. doi: 10.1056/NEJM199908193410807.
  13. Levi M, ten Cate H, van der Poll T, et al. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA. 1993;270(8):975−979.
  14. Douglas GW, Beckman EM. Clinical management of septic abortion complicated by hypotension. AJOG. 1966;96(5):633−641. doi: 10.1016/0002-9378(66)90412-1.
  15. Bridwell RE, Carius BM, Long B, et al. Sepsis in pregnancy: recognition and resuscitation. West J Emerg Med. 2019;20(5):822–832. doi: 10.5811/westjem.2019.6.43369.
  16. Bone R, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. CHEST. 1997;112(1):235–243. doi: 10.1378/chest.112.1.235.
  17. Balk R. Roger C. Bone, MD and the evolving paradigms of sepsis. Contrib Microbiol. 2011;17:1−11. doi: 10.1159/000323970.
  18. Rangel-Fausto MS, Piltet D, Costigan M, et al. The natural history of the systemic inflammatory response (SIRS). A prospective study. JAMA. 1995;273(2):117−123.
  19. Iscra F. Prognostic value of IL-6, TNF and CRP in sepsis. Sirs patients. Intensive Care Med. 1997;23(8):78.
  20. Damas P, Ledoux D, Nys M, et al. Cytokine serum level during severe sepsis: human IL-6 as a marker of severity. Ann Surg. 1992;215(4):356−362. doi: 10.1097/00000658-199204000-00009.
  21. Levi M, Keller TT, van Gorp E, ten Cate H. Infection and inflammation and the coagulation system. Cardiovasc Res. 2003;60(10):26−39. doi: 10.1016/s0008-6363(02)00857-x.
  22. Hack СE, Aarden LA, Thijs LG. Role of cytokines in sepsis. Adv Immunol. 1997;66:101−195. doi: 10.1016/s0065-2776(08)60597-0.
  23. Grimaldi D, Turcott EW, Taccone FS. IL-1 receptor antagonist in sepsis: new findings with old data? J Thorac Dis. 2016;8(9):2379–2382. doi: 10.21037/jtd.2016.08.51.
  24. Хизроева Д.Х., Михайлиди И.А., Стулёва Н.С. Значение определения протеина С в акушерской практике // Практическая медицина. ― 2013. ― №7. ― С. 52−57. [Khizroeva JKh, Mikhaylidi IA, Stuleva NS. Significance of protein C determination in obstetric practice. Practical medicine. 2013;(7):52−57. (In Russ).]
  25. Franchini M, Mannucci PM. Advantages and limits of ADAMTS13 testing in thrombotic thrombocytopenic purpura. Blood Transfus. 2008;6(3):127–135. doi: 10.2450/2008.0056-07.
  26. Nguyen TC, Liu A, Liu L, et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92(1):121−124. doi: 10.3324/haematol.10262.
  27. Ruf W, Ruggeri Z. Neutrophils release brakes of coagulation. Nat Med. 2010;16:851–852. doi: 10.1038/nm0810-851.
  28. Kaplan MJ. Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol. 2011;7(12):691–699. doi: 10.1038/nrrheum.2011.132.
  29. Badimon L, Vilahur G. Neutrophil extracellular traps: a new source of tissue factor in atherothrombosis. Eur Heart J. 2015;36(22):1364–1366. doi: 10.1093/eurheartj/ehv105.
  30. Kapoor S, Opneja A, Nayak L. The role of neutrophils in thrombosis. Thromb Res. 2018;170:87–96. doi: 10.1016/j.thrombes.2018.08.005.
  31. Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol. 2016;7:236. doi: 10.3389/fimmu.2016.00236.
  32. Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189(6):2689–2695. doi: 10.4049/jimmunol.1201719.
  33. Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, et al. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81. doi: 10.3389/fimmu.2017.00081.
  34. Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front Cardiovasc Med. 2019;6:85. doi: 10.3389/fcvm.2019.00085.
  35. Kim S-J, Jenne CN. Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin Immunol. 2016;28(6):546−554. doi: 10.1016/j.smim.2016.10.013.
  36. Li RH, Tablin F. A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci. 2018;5:291. doi: 10.3389/fvets.2018.00291.
  37. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–15885. doi: 10.1073/pnas.1005743107.
  38. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi: 10.1111/j.1538-7836.2011.04544.x.
  39. He Y, Yang FY, Sun EW. Neutrophil extracellular traps in autoimmune diseases. Chin Med J (Engl). 2018;131(13):1513–1519. doi: 10.4103/0366-6999.235122.
  40. Lee KH, Kronbichler A, Park DD-Y, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun Rev. 2017;16(11):1160−1173. doi: 10.1016/j.autrev.2017.09.012.
  41. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;e201017. doi: 10.1001/jamacardio.2020.1017.
  42. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497−506. doi: 10.1016/S0140-6736(20)30183-5.

Supplementary files

Supplementary Files Action
Fig. 1. Inflammation and activation of the hemostatic system

Download (142KB) Indexing metadata
Fig. 2. Neutrophilic extracellular traps NETs

Download (356KB) Indexing metadata



Abstract - 1736

PDF (Russian) - 311


Article Metrics

Metrics Loading ...



Comments on this article

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies