Clinical pharmacology technologies for personalization of cardiovascular diseases drug treatment: focus on direct oral anticoagulants

Cover Page
Open Access Open Access
Restricted Access Subscription or Fee Access

Abstract


One of the main causes for adverse reactions development is not taking into account the pharmacokinetics of drugs and the dose. Pharmacokinetics of drugs is mostly defined by the cytochrome P-450 isoenzymes activity, carboxylesterases and many other isoenzymes of drug metabolism, as well as ADME transporters (P-gp etc.) which take part in the process of drug metabolism. The activity of these isoenzymes is defined by the genetic aspects of patients and non-genetic aspects such as comorbidity and drug-drug interactions. The development of complex algorithms for personalization of therapy based on the results of pharmacogenetic studies and in the form of a decision support system will play an important role in reduction of adverse drug reactions. A lot can be achieved for personalization of Direct Oral Anticoagulants for treatment of cardiovascular diseases. New approaches are being developed based on the results of pharmacogenetic and pharmacokinetic testing that will help diminish adverse effects of drugs.


Dmitry A. Sychev

Russian Medical Academy of Continuous Professional Education

Email: dmitrysychevrmapo@gmail.com
ORCID iD: 0000-0002-4496-3680
SPIN-code: 4525-7556
Scopus Author ID: 7801389135

Russian Federation, 2/1 Barrikadnaya street 125993, Moscow

MD, PhD, Professor

Igor N. Sychev

Russian Medical Academy of Continuous Professional Education

Email: sychevigor@mail.ru
ORCID iD: 0000-0002-2970-3442
SPIN-code: 7282-6014

Russian Federation, 2/1 Barrikadnaya street 125993, Moscow

MD, PhD

Karin B. Mirzaev

Russian Medical Academy of Continuous Professional Education

Email: karin05doc@yandex.ru
ORCID iD: 0000-0002-9307-4994
SPIN-code: 8308-7599
Scopus Author ID: 57189643635

Russian Federation, 2/1 Barrikadnaya street 125993, Moscow

MD, PhD

Eric I. Rytkin

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: erytkin@gmail.com
ORCID iD: 0000-0003-2511-0655
SPIN-code: 7095-1630
Scopus Author ID: 57194202749

Russian Federation, 2/1 Barrikadnaya street 125993, Moscow

PhD Student

Dmitriy V. Ivashchenko

Russian Medical Academy of Continuous Professional Education

Email: dvi1991@yandex.ru
ORCID iD: 0000-0002-2295-7167
SPIN-code: 9435-7794
Scopus Author ID: 56674470700

Russian Federation, 2/1 Barrikadnaya street 125993, Moscow

MD, PhD

Irina V. Bure

Russian Medical Academy of Continuous Professional Education

Email: bureira@mail.ru
ORCID iD: 0000-0003-2043-5848
SPIN-code: 3212-7905

Russian Federation, 2/1 Barrikadnaya street 125993, Moscow

PhD

Vitaliy A. Otdelenov

Russian Medical Academy of Continuous Professional Education

Email: vitotd@ya.ru
ORCID iD: 0000-0003-0623-7263
SPIN-code: 8357-5770

Russian Federation, 2/1 Barrikadnaya street 125993, Moscow

PhD

  1. James JT. A new, evidence-based estimate of patient harms associated with hospital care. J Patient Saf. 2013;9(3):122–128. doi: 10.1097/PTS.0b013e3182948a69.
  2. Davies EC, Green CF, Mottram DR, Pirmohamed M. Interpreting adverse drug reaction (ADR) reports as hospital patient safety incidents. Br J Clin Pharmacol. 2010;70(1):102–108. doi: 10.1111/j.1365-2125.2010.03671.x.
  3. Carnevali L, Krug B, Amant F, et al. Performance of the adverse drug event trigger tool and the global trigger tool for identifying adverse drug events: experience in a Belgian hospital. Ann Pharmacother. 2013;47(11):1414–1419. doi: 10.1177/1060028013500939.
  4. Zhou Y, Zhang GQ, Wei YH, et al. The impact of drug transporters on adverse drug reaction. Eur J Drug Metab Pharmacokinet. 2013;38(2):77–85. doi: 10.1007/s13318-013-0117-1.
  5. Blobel B. Translational medicine meets new technologies for enabling personalized care. Stud Health Technol Inform. 2013;189:8–23.
  6. Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease ― implications for personalized medicine. Pharmacol Rev. 2013;65(3):987–1009. doi: 10.1124/pr.112.007252.
  7. Yamaguchi D, Sakata Y, Tsuruoka N, et al. Upper gastrointestinal bleeding in Japanese patients prescribed antithrombotic drugs: differences in trends over time. Hepatogastroenterology. 2014;61(132):1055–1062.
  8. Merali Z, Ross S, Paré G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol Drug Interact. 2014;29(3):143–151. doi: 10.1515/dmdi-2014-0009.
  9. Varenhorst C, Eriksson N, Johansson Å, et al. Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur Heart J. 2015;36(29):1901–1912. doi: 10.1093/eurheartj/ehv116.
  10. Harenberg J, Du S, Wehling M, et al. Measurement of dabigatran, rivaroxaban and apixaban in samples of plasma, serum and urine, under real life conditions. An international study. Clin Chem Lab Med. 2016;54(2):275–283. doi: 10.1515/cclm-2015-0389.
  11. Bousoula E, Kolovou V, Perrea D, Kolovou G. Pharmacogenetics and statin treatment: reality or theory? Curr Vasc Pharmacol. 2015;13(5):616–623. doi: 10.2174/1570161113666150130165651.
  12. Mihaljević-Peles A, Sagud M, Bozina N, et al. Pharmacogenetics and antipsychotics in the light of personalized pharmacotherapy. Psychiatr Danub. 2010;22(2):335−337.
  13. Matsumoto T, Ohno M, Azuma J. Future of pharmacogenetics-based therapy for tuberculosis. Pharmacogenomics. 2014;15(5):601–607. doi: 10.2217/pgs.14.38.
  14. Daly AK. Pharmacogenetics of drug metabolizing enzymes in the United Kingdom population: review of current knowledge and comparison with selected European populations. Drug Metab Pers Ther. 2015;30(3):165–174. doi: 10.1515/dmdi-2014-0034.
  15. McConnell ER, Bell SM, Cote I, et al. Systematic Omics Analysis Review (SOAR) tool to support risk assessment. PLoS One. 2014;9(12):e110379. doi: 10.1371/journal.pone.0110379.
  16. Samwald M, Adlassnig KP. Pharmacogenomics in the pocket of every patient? A prototype based on quick response codes. J Am Med Inform Assoc. 2013;20(3):409–412. doi: 10.1136/amiajnl-2012-001275.
  17. Nicolaides AN, Fareed J, Kakkar AK, et al. Prevention and treatment of venous thromboembolism ― International Consensus Statement. Int Angiol. 2013;32(2):111−260.
  18. Cousins D, Harris W. Risk assessment of anticoagulant therapy. London: NHS National Patient Safety Agency; 2006.
  19. Budnitz DS, Pollock DA, Weidenbach KN, et al. National surveillance of emergency department visits for outpatient adverse drug events. JAMA. 2006;296(15):1858−1866. doi: 10.1001/jama.296.15.1858.
  20. Shehab N, Lovegrove MC, Geller AI, et al. US emergency department visits for outpatient adverse drug events, 2013−2014. JAMA. 2016;316(20):2115−2125. doi: 10.1001/jama.2016.16201.
  21. Gurwitz JH, Field TS, Harrold LR, et al. Incidence and preventability of adverse drug events among older persons in the ambulatory setting. JAMA. 2003;289(9):1107–1116. doi: 10.1001/jama.289.9.1107.
  22. Hanlon JT, Pieper CF, Hajjar ER, et al. Incidence and predictors of all and preventable adverse drug reactions in frail elderly persons after hospital stay. J Gerontol A Biol Sci Med Sci. 2006;61(5):511–515. doi: 10.1093/gerona/61.5.511.
  23. Howe Z, Naville-Cook C, Cole D. Bleeding rates of Veterans taking apixaban or rivaroxaban for atrial fibrillation or venous thromboembolism. J Thromb Thrombolysis. 2019;47(2):280–286. doi: 10.1007/s11239-018-1770-7.
  24. Adcock DM, Gosselin R. Direct Oral Anticoagulants (DOACs) in the laboratory: 2015 review. Thromb Res. 2015;136(1):7–12. doi: 10.1016/j.thromres.2015.05.001.
  25. Pirmohamed M, Burnside G, Eriksson N, et al.; EU-PACT Group. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294−2303. doi: 10.1056/NEJMoa1311386.
  26. Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369(24):2283–2293. doi: 10.1056/NEJMoa1310669.
  27. Кропачева Е.С. Актуальные вопросы терапии варфарином для практикующих врачей // Русский медицинский журнал. ― 2012. ― Т.20. ― №14. ― С. 686−692. [Kropacheva ES. Aktual’nyye voprosy terapii varfarinom dlya praktikuyushchikh vrachey. Russkii meditsinskii zhurnal. 2012;20(14):686−692. (In Russ).]
  28. Гаврисюк Е.В., Сычев Д.А., Казаков Р.Е., и др. Опыт использования фармакогенетического тестирования для персонализации дозирования варфарина в поликлинических условиях // Тихоокеанский медицинский журнал. ― 2015. ― №1. ― С. 60−62. [Gavrisyuk EV, Sychev DA, Kazakov RE, et al. Experience in the use of pharmacogenetic testing for personalizing warfarin dosing in outpatient conditions. Pacific medical journal. 2015;(1):60−62. (In Russ).]
  29. Сычев Д.А., Антонов И.М., Кропачева Е.С., Панченко Е.П. Какой из алгоритмов дозирования варфарина, основанных на результатах фармакогенетического тестирования, подходит российским пациентам? // Кардиология. ― 2010. ― Т.50. ― №4. ― С. 35−37. [Sychev DA, Antonov IM, Kropacheva ES, Panchenko EP. Which of algorithms of Warfarin dosing based on results of pharmacogenetic testing is suitable for patients in Russia? Cardiology. 2010;50(4):35−37. (In Russ).]
  30. Сычев Д.А., Иващенко Д.В., Русин И.В. Влияние использования фармакогенетического тестирования на риск развития кровотечений и эпизодов чрезмерной гипокоагуляции при применении варфарина: первый метаанализ отечественных проспективных исследований? // Терапевтический архив. ― 2014. ― Т.86. ― №4. ― С. 64−71. [Sychev DA, Ivashchenko DV, Rusin IV. Vliyaniye ispol’zovaniia farmakogeneticheskogo testirovaniia na risk razvitiia krovotecheniy i epizodov chrezmernoy gipokoagulyatsii pri primenenii varfarina: pervyy metaanaliz otechestvennykh prospektivnykh issledovaniy? Ter Arkh. 2014;86(4):64−71. (In Russ).]
  31. Graham DJ, Reichman ME, Wernecke M, et al. Cardiovascular, bleeding, and mortality risks in elderly Medicare patients treated with dabigatran or warfarin for nonvalvular atrial fibrillation. Circulation. 2015;131(2):157–164. doi: 10.1161/CIRCULATIONAHA.114.012061.
  32. Russo V, Bianchi V, Cavallaro C, et al. Efficacy and safety of dabigatran in a “real-life” population at high thromboembolic and hemorrhagic risk: data from MonaldiCare registry. Eur Rev Med Pharmacol Sci. 2015;19(20):3961–3967.
  33. Pelliccia F, Tanzilli G, Schiariti M, et al. [Real-world data on novel oral anticoagulants: the added value of registries and observational studies. Focus on apixaban. (In Italian).] G Ital Cardiol (Rome). 2016;17(12 Suppl 3):3S–21S. doi: 10.1714/2642.27146.
  34. Loo SY, Dell’Aniello S, Huiart L, Renoux C. Trends in the prescription of novel oral anticoagulants in UK primary care. Br J Clin Pharmacol. 2017;83(9):2096–2106. doi: 10.1111/bcp.13299.
  35. Halvorsen S, Ghanima W, Fride Tvete I, et al. A nationwide registry study to compare bleeding rates in patients with atrial fibrillation being prescribed oral anticoagulants. Eur Heart J Cardiovasc Pharmacother. 2017;3(1):28–36. doi: 10.1093/ehjcvp/pvw031.
  36. Reilly PA, Lehr T, Haertter S, et al. The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: the RE-LY trial (randomized evaluation of long-term anticoagulation therapy). J Am Coll Cardiol. 2014;63(4):321−328. doi: 10.1016/j.jacc.2013.07.104.
  37. Larsen TB, Rasmussen LH, Skjøth F, et al. Efficacy and safety of dabigatran etexilate and warfarin in “real-world” patients with atrial fibrillation: a prospective nationwide cohort study. J Am Coll Cardiol. 2013;61(22):2264–2273. doi: 10.1016/j.jacc.2013.03.020.
  38. Seiffge DJ, Traenka C, Polymeris A, et al. Feasibility of rapid measurement of Rivaroxaban plasma levels in patients with acute stroke. J Thromb Thrombolysis. 2017;43(1):112–116. doi: 10.1007/s11239-016-1431-7.
  39. Pollack CV Jr, Reilly PA, van Ryn J, et al. Idarucizumab for dabigatran reversal ― full cohort analysis. N Engl J Med. 2017;377(5):431–441. doi: 10.1056/NEJMoa1707278.
  40. Bouget J, Oger E. Emergency admissions for major haemorrhage associated with direct oral anticoagulants. Thromb Res. 2015;136(6):1190–1194. doi: 10.1016/j.thromres.2015.10.036.
  41. Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75(1):13–33. doi: 10.1016/j.clpt.2003.09.012.
  42. Gouin-Thibault I, Delavenne X, Blanchard A, et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017;15(2):273−283. doi: 10.1111/jth.13577.
  43. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76(3):455–466. doi: 10.1111/bcp.12075.
  44. Gnoth MJ, Buetehorn U, Muenster U, et al. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–380. doi: 10.1124/jpet.111.180240.
  45. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141. doi: 10.1016/j.pharmthera.2012.12.007.
  46. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–355. doi: 10.1038/nature02871.
  47. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–531. doi: 10.1038/nrg1379.
  48. Hudder A, Novak RF. miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci. 2008;103(2):228–240. doi: 10.1093/toxsci/kfn033.
  49. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–789. doi: 10.1038/nrd3179.
  50. Gargalionis AN, Basdra EK. Insights in microRNAs biology. Curr Top Med Chem. 2013;13(13):1493−1502. doi: 10.2174/15680266113139990098.
  51. Haenisch S, Laechelt S, Bruckmueller H, et al. Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379. Mol Pharmacol. 2011;80(2):314–320. doi: 10.1124/mol.110.070714.
  52. Yu AM, Pan YZ. Noncoding microRNAs: small RNAs play a big role in regulation of ADME? Acta Pharmaceutica Sinica B. 2012;2(2):93−101.doi: 10.1016/j.apsb.2012.02.011.
  53. Yokoi T, Nakajima M. microRNAs as mediators of drug toxicity. Annu Rev Pharmacol Toxicol. 2013;53:377–400. doi: 10.1146/annurev-pharmtox-011112-140250.
  54. Lamba V, Ghodke-Puranik Y, Guan W, Lamba JK. Identification of suitable reference genes for hepatic microRNA quantitation. BMC Res Notes. 2014;7:129. doi: 10.1186/1756-0500-7-129.
  55. Wang ZY, Chen M, Zhu LL, et al. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag. 2015;11:449–467. doi: 10.2147/TCRM.S80437.
  56. Sun KX, Jiao JW, Chen S, et al. MicroRNA-186 induces sensitivity of ovarian cancer cells to paclitaxel and cisplatin by targeting ABCB1. J Ovarian Res. 2015;8:80. doi: 10.1186/s13048-015-0207-6.
  57. Rieger JK, Reutter S, Hofmann U, et al. Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9. Drug Metab Dispos. 2015;43(6):884–888. doi: 10.1124/dmd.114.062844.
  58. Mohri T, Nakajima M, Fukami T, et al. Human CYP2E1 is regulated by miR-378. Biochem Pharmacol. 2010;79(7):1045−1052. doi: 10.1016/j.bcp.2009.11.015.
  59. Tsuchiya M, Dang N, Kerr EO, et al. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell. 2006;5(6):505-514. doi: 10.1111/j.1474-9726.2006.00240.x.
  60. Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos. 2009;37(10):2112–2117. doi: 10.1124/dmd.109.027680.
  61. Takagi S, Nakajima M, Mohri T, Yokoi T. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem. 2008;283(15):9674−9680. doi: 10.1074/jbc.M709382200.
  62. Ramamoorthy A, Li L, Gaedigk A, et al. In silico and in vitro identification of microRNAs that regulate hepatic nuclear factor 4α expression. Drug Metab Dispos. 2012;40(4):726−733. doi: 10.1124/dmd.111.040329.
  63. Tang QJ, Lin HM, He GD, et al. Plasma miR-142 accounting for the missing heritability of CYP3A4/5 functionality is associated with pharmacokinetics of clopidogrel. Pharmacogenomics. 2016;17(14):1503−1517. doi: 10.2217/pgs-2016-0027.
  64. Tang Y, Lei W, Chen Y, et al. Noncoding RNAs and stem cell function and therapy. Stem Cells Int. 2018;2018:7306034. doi: 10.1155/2018/7306034.
  65. Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929−11947. doi: 10.1523/JNEUROSCI.1860-14.2014.
  66. Shi R, Ge L, Zhou X, et al. Decreased platelet miR-223 expression is associated with high on-clopidogrel platelet reactivity. Thromb Res. 2013;131(6):508−513. doi: 10.1016/j.thromres.2013.02.015.
  67. Carino A, De Rosa S, Sorrentino S, et al. Modulation of circulating microRNAs levels during the switch from clopidogrel to ticagrelor. Biomed Res Int. 2016;2016:3968206. doi: 10.1155/2016/3968206.

Supplementary files

There are no supplementary files to display.

Views

Abstract - 49

PDF (Russian) - 1

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies