Varicose veins: on the verge of discovering the cause?

  • Authors: Porembskaya O.1,2, Zolotukhin I.3, Smetanina M.4,5, Sazhin A.6, Filipenko M.4,5, Kirienko A.7
  • Affiliations:
    1. FSBSI Institute of Experimental Medicine, St. Petersburg, Russia
    2. North-Western State Medical University named after I.I.Mechnikov
    3. Department of fundamental and applied research in surgery, Pirogov Russian National Research Medical University, Moscow, Russia
    4. Институт химической биологии и фундаментальной медицины СО РАН
    5. Новосибирский государственный университет
    6. НИИ клинической хирургии Российского национального медицинского университета им. Н.И. Пирогова
    7. Российский национальный медицинский университет им. Н.И. Пирогова
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/1213
  • DOI: https://doi.org/10.15690/vramn1213
Open Access Open Access
Restricted Access Subscription or Fee Access

Abstract


Varicose veins of the lower limbs are one of the most common and wide-spread pathology all around the world. What triggers the specific changes in a vein wall still remains unclear as well as what happens in the layers of the vein wall after the disease starts. The aim of the article is to analyze published data and results of researches on epidemiology, genetics, cellular and molecular mechanisms underlying varicose veins pathogenesis. It is now commonly accepted that vein wall changes in patients with varicose veins result from vein-specific inflammation. This process includes leukocytes adhesion to venous endothelium with their subsequent migration into the vein wall and surrounding tissues. Activated leukocytes express a number of molecules that lead to vein wall remodeling and dilation. Comprehensive assessment of the epidemiological data on the prevalence of varicose veins and risk factors, of the findings from genetic studies, of data on molecular-cell interactions as well as results of various surgical interventions in patients with varicose veins, shows that remodeling is a reversible process that can be stopped and reversed by different stimuli including some chemical substances. For the first time in the literature, the authors assume that varicose veins can be successfully cured pharmacologically with no surgical interventions needed.


Olga Porembskaya

FSBSI Institute of Experimental Medicine, St. Petersburg, Russia; North-Western State Medical University named after I.I.Mechnikov

Author for correspondence.
Email: porembskaya@yandex.ru
ORCID iD: 0000-0003-3537-7409
SPIN-code: 9775-1057
https://phlebounion.ru/my/

Russian Federation, 12, Acad. Pavlov Street 197367, St. Petersburg 191015, Russian Federation, Saint-Petersburg, Kirochnaya street, 41

MD, PhD

Igor Zolotukhin

Department of fundamental and applied research in surgery, Pirogov Russian National Research Medical University, Moscow, Russia

Email: zoloto70@bk.ru
ORCID iD: 0000-0002-6563-0471
SPIN-code: 3426-2981

Russian Federation, г. Москва, 119997, Москва, ул. Островитянова, д.1;

д.м.н., профессор РАН, заведующий отделом фундаментальных и прикладных исследований в хирургии НИИ клинической хирургии Российского национального медицинского университета им. Н.И. Пирогова

Maria Smetanina

Институт химической биологии и фундаментальной медицины СО РАН; Новосибирский государственный университет

Email: mariya_smetanina@niboch.nsc.ru
ORCID iD: 0000-0001-6080-4615
SPIN-code: 6045-9880
630090, Новосибирск, пр. Ак. Лаврентьева, д. 8

к.б.н., младший научный сотрудник лаборатории фармакогеномики Института химической биологии и фундаментальной медицины СО РАН, ассистент кафедры фундаментальной медицины ИМП Новосибирского государственного университета

Alexander Sazhin

НИИ клинической хирургии Российского национального медицинского университета им. Н.И. Пирогова

Email: sazhin-av@yandex.ru
ORCID iD: 0000-0001-6188-6093
SPIN-code: 7064-6369

Russian Federation, 119997, Москва, ул. Островитянова, д.1

д.м.н., член-корреспондент РАН, профессор, директор НИИ клинической хирургии Российского национального медицинского университета им. Н.И. Пирогова

Maxim Filipenko

Институт химической биологии и фундаментальной медицины СО РАН; Новосибирский государственный университет

Email: max@niboch.nsc.ru
ORCID iD: 0000-0002-8950-5368
SPIN-code: 4025-0533

Russian Federation, 630090, Новосибирск, пр. Ак. Лаврентьева, д. 8

к.б.н., заведующий лабораторией фармакогеномики Института химической биологии и фундаментальной медицины СО РАН, ассистент кафедры клинической биохимии ИМП Новосибирского государственного университета

Alexander Kirienko

Российский национальный медицинский университет им. Н.И. Пирогова

Email: aik1910@mail.ru
ORCID iD: 0000-0001-8792-1694
SPIN-code: 8319-5682

Russian Federation, 119997, Москва, ул. Островитянова, д.1

д.м.н., академик РАН, профессор, главный научный сотрудник отдела фундаментальных и прикладных исследований в хирургии НИИ клинической хирургии Российского национального медицинского университета им. Н.И. Пирогова

  • Селиверстов Е.И., Авакъянц И.П., Никишков А.С., Золотухин И.А. [Seliverstov EI, Avak’yants IP, Nikishkov AS, Zolotukhin IA. Epidemiology of Chronic Venous Disease. Flebologiia [Internet]. Media Sphera Publishing House; 2016 [cited 2019 May 2];10(1):35-43 (In Russ)]. Available from: http://www.mediasphera.ru/issues/flebologiya/2016/1/downloads/ru/461997-69762015015
  • Robertson L, Evans C, Fowkes FGR. Epidemiology of chronic venous disease. Phlebol J Venous Dis [Internet]. 2008 Jun [cited 2018 Jan 6];23(3):103–111. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18467617
  • Richardson JB, Dixon M. Varicose veins in tropical Africa. Lancet (London, England) [Internet]. 1977 Apr 9 [cited 2019 Jul 21];1(8015):791–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/66583
  • Kakande I. Varicose veins in Africans as seen at Kenyatta National Hospital, Nairobi. East Afr Med J. 1981;58(9):667–76.
  • Stanhope JM. Varicose veins in a population of lowland New Guinea. Int J Epidemiol. 1975;4(3):221–5.
  • Beaglehole R, Prior IA, Salmond CE, Davidson F. Varicose veins in the South Pacific. Int J Epidemiol. 1975;4(4):295–9.
  • Bawakid KO, Al-Raddadi RM, Sabban SS, Alturky KA, Mohamed MS. Prevalence of chronic venous insufficiency in the Saudi adult population. Saudi Med J. 2005;26(2):225–9.
  • Zolotukhin IA, Seliverstov EI, Shevtsov YN, Avakiants IP, Nikishkov AS, Tatarintsev AM, et al. Prevalence and Risk Factors for Chronic Venous Disease in the General Russian Population. Eur J Vasc Endovasc Surg. 2017;54(6):752–8.
  • Evans CJ, Fowkes FG, Ruckley C V, Lee AJ. Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study. J Epidemiol Community Health. 1999;53(3):149–53.
  • Criqui MH, Jamosmos M, Fronek A, Denenberg JO, Langer RD, Bergan J, et al. Chronic venous disease in an ethnically diverse population: the San Diego Population Study. Am J Epidemiol. 2003;158(5):448–56.
  • Cornu-Thenard A, Boivin P, Baud JM, De Vincenzi I, Carpentier PH. Importance of the familial factor in varicose disease. Clinical study of 134 families. J Dermatol Surg Oncol. 1994;20(5):318–26.
  • Zöller B, Ji J, Sundquist J, Sundquist K. Family history and risk of hospital treatment for varicose veins in Sweden. Br J Surg. 2012;99(7):948–53.
  • Criqui MH, Denenberg JO, Bergan J, Langer RD, Fronek A. Risk factors for chronic venous disease: the San Diego Population Study. J Vasc Surg. 2007;46(2):331–7.
  • Surendran S, Girijamma A, Nair R, Ramegowda KS, Nair DH, Thulaseedharan J V., et al. Forkhead box C2 Promoter Variant c.-512C>T Is Associated with Increased Susceptibility to Chronic Venous Diseases. PLoS One. 2014;9(3):e90682.
  • Shadrina AS, Zolotukhin IA, Filipenko ML, Shadrina AS, Zolotukhin IA, Filipenko ML. Molecular Mechanisms Underlying the Development of Varicose Veins of Low Extremities. Flebologiia. Media Sphera Publishing House; 2017;11(2):71.
  • Shadrina AS, Smetanina MA, Sokolova EA, Sevost’ianova KS, Shevela AI, Demekhova MY, et al. Association of polymorphisms near the FOXC2 gene with the risk of varicose veins in ethnic Russians. Phlebol J Venous Dis. 2016;31(9):640–8.
  • Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–11.
  • Ridderstrale M, Carlsson E, Klannemark M, Cederberg A, Kosters C, Tornqvist H, et al. FOXC2 mRNA Expression and a 5’ Untranslated Region Polymorphism of the Gene Are Associated With Insulin Resistance. Diabetes. 2002;51(12):3554–60.
  • Osawa H, Onuma H, Murakami A, Ochi M, Nishimiya T, Kato K, et al. Systematic Search for Single Nucleotide Polymorphisms in the FOXC2 Gene: The Absence of Evidence for the Association of Three Frequent Single Nucleotide Polymorphisms and Four Common Haplotypes With Japanese Type 2 Diabetes. Diabetes. 2003;52(2):562–7.
  • Shadrina A, Tsepilov Y, Smetanina M, Voronina E, Seliverstov E, Ilyukhin E, et al. Polymorphisms of genes involved in inflammation and blood vessel development influence the risk of varicose veins. Clin Genet. 2018;94(2):191–9.
  • Zamboni P, Tognazzo S, Izzo M, Pancaldi F, Scapoli GL, Liboni A, et al. Hemochromatosis C282Y gene mutation increases the risk of venous leg ulceration. J Vasc Surg. 2005;42(2):309–14.
  • Sokolova EA, Shadrina AS, Sevost’ianova KS, Shevela AI, et al. HFE p.C282Y gene variant is associated with varicose veins in Russian population. Clin Exp Med. 2016;16(3):463–70.
  • Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;165–97.
  • Kowalewski R, Malkowski A, Sobolewski K, Gacko M. Evaluation of aFGF/bFGF and FGF Signaling Pathway in the Wall of Varicose Veins. J Surg Res. 2009;155(1):165–72.
  • Karban AS, Okazaki T, Panhuysen CIM, Gallegos T et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet. 2004;13(1):35–45.
  • Gautam A, Gupta S, Mehndiratta M, Sharma M, Singh K, Kalra OP, et al. Association of NFKB1 gene polymorphism (rs28362491) with levels of inflammatory biomarkers and susceptibility to diabetic nephropathy in Asian Indians. World J Diabetes. 2017;8(2):66.
  • Shadrina AS, Smetanina MA, Sevost’ianova KS, Seliverstov EI, Ilyukhin EA, Voronina EN, et al. Functional polymorphism rs1024611 in the MCP1 gene is associated with the risk of varicose veins of lower extremities. J Vasc Surg Venous Lymphat Disord. 2017;5(4):561–6.
  • Smetanina MA, Kel AE, Sevost’ianova KS, Maiborodin I V, Shevela AI, Zolotukhin IA, et al. DNA methylation and gene expression profiling reveal MFAP5 as a regulatory driver of extracellular matrix remodeling in varicose vein disease. Epigenomics. 2018;10(8):1103–19.
  • Паткин Е.Д., Софронов Г.А. Эпигенетика популяций, экотоксикогенетика и болезни человека. Экологическая генетика. 2012;10(4):14–28. [Patkin EL, Sofronof GA. Population epigenetics? ecotoxicology and human diseases. Ekologicheskaya genetika. 2012;10(4):14–28 (In Russ)]
  • Сметанина МА, Шадрина АС, Золотухин И.А., Селиверстов Е.И., Филипенко М.Л. Дифференциальная экспрессия генов при варикозной болезни нижних конечностей: современное состояние проблемы, анализ опубликованных данных.Флебология. 2017; 2017;11(4):190-204. [Smetanina MA, Shadrina AS, Zolotukhin IA, Seliverstov EI, Filipenko ML. Differentially Expressed Genes in Varicose Veins Disease: Current State of the Problem, Analysis of the Published Data. Flebologiia. 2017;11(4):190-204. (In Russ)].
  • Kun L, Ying L, Lei W, Jianhua Z, Yongbo X, Tao W, et al. Dysregulated apoptosis of the venous wall in chronic venous disease and portal hypertension. Phlebol J Venous Dis. 2016;31(10):729–36.
  • Xu Y, Bei Y, Li Y, Chu H. Phenotypic and functional transformation in smooth muscle cells derived from varicose veins. J Vasc Surg Venous Lymphat Disord. 2017;5(5):723–33.
  • Lim CS, Gohel MS, Shepherd AC, Paleolog E, Davies AH. Venous Hypoxia: A Poorly Studied Etiological Factor of Varicose Veins. J Vasc Res. 2011;48(3):185–94.
  • Lee J-D, Yang W-K, Lee T-H. Increased Expression of Hypoxia-Inducible Factor-1alpha and Bcl-2 in Varicocele and Varicose Veins. Ann Vasc Surg. 2012;26(8):1100–5.
  • Chen S, Qin S, Wang M, Zhang S. Expression and significance of NELIN and SM22α in varicose vein tissue. Exp Ther Med. 2015;9(3):845–9.
  • Ghaderian SMH, Khodaii Z. Tissue remodeling investigation in varicose veins. Int J Mol Cell Med. Babol University of Medical Sciences; 2012;1(1):50–61.
  • Chastanet S, Pittaluga P. Patterns of reflux in the great saphenous vein system. Phlebol J Venous Dis. 2013;28(1_suppl):39–46.
  • Puleo V, Castagno PL. Progression of superficial venous insufficiency: analysis and implications for therapy. J Vasc Diagnostics. Dove Press; 2013;1:5.
  • Bernardini E, De Rango P, Piccioli R, Bisacci C, Pagliuca V, Genovese G, et al. Development of Primary Superficial Venous Insufficiency: The Ascending Theory. Observational and Hemodynamic Data From a 9-Year Experience. Ann Vasc Surg. 2010;24(6):709–20.
  • Mowatt-Larssen E, Shortell C. CHIVA. Semin Vasc Surg. 2010;23(2):118–22.
  • Onida S, Davies AH. CHIVA, ASVAL and related techniques – Concepts and evidence. Phlebol J Venous Dis. 2015;30(2_suppl):42–5.
  • Bellmunt-Montoya S, Escribano JM, Dilme J, Martinez-Zapata MJ. CHIVA method for the treatment of chronic venous insufficiency. Cochrane Database Syst Rev. 2015;(6):CD009648.
  • Zamboni P, Cisno C, Marchetti F, Mazza P, Fogato L, Carandina S, et al. Minimally invasive surgical management of primary venous ulcers vs. compression treatment: a randomized clinical trial. Eur J Vasc Endovasc Surg. 2003;25(4):313–8.
  • Воронцова АВ, Лобастов КВ, Лаберко ЛА, Баринов ВЕ. Возможности купирования рефлюкса по стволу большой подкожной вены при эндовазальной лазерной коагуляции перфорантной вены и (или) склеротерапии варикозного притока: результаты проспективного сравнительного исследования. Хирург. 2018;11–12:51–65. [Vorontsova AV, Lobastov KV, Laberko LA, Barinov VE. Opportunities to reduce reflux in the great saphenous vein with endovascular laser coagulation of the perforating vein and/or sclerotherapy of varicose tributaries: results of prospective comparative study. Khirurg. 2018;11–12:51–65. (In Russ)].
  • Zolotukhin IA, Seliverstov EI, Zakharova EA, Kirienko AI. Short-term results of isolated phlebectomy with preservation of incompetent great saphenous vein (ASVAL procedure) in primary varicose veins disease. Phlebol J Venous Dis. 2017;32(9):601–7.
  • Pittaluga P, Chastanet S, Rea B, Barbe R. Midterm results of the surgical treatment of varices by phlebectomy with conservation of a refluxing saphenous vein. J Vasc Surg. 2009;50(1):107–18.
  • Biemans AAM, van den Bos RR, Hollestein LM, Maessen-Visch MB, Vergouwe Y, Neumann HAM, et al. The effect of single phlebectomies of a large varicose tributary on great saphenous vein reflux. J Vasc Surg Venous Lymphat Disord. 2014;2(2):179–87.
  • Görmüş U, Kahraman OT, Isbir S, Tekeli A, Isbir T. MMP2 gene polymorphisms and MMP2 mRNA levels in patients with superficial varices of lower extremities. In Vivo. 2011;25(3):387–91.
  • Charpentier MS, Taylor JM, Conlon FL. The CASZ1/ Egfl7 transcriptional pathway is required for RhoA expression in vascular endothelial cells. Small GTPases. 2013;4(4):231–5.
  • Pfisterer L, König G, Hecker M, Korff T. Pathogenesis of varicose veins - lessons from biomechanics. Vasa. 2014;43(2):88–99.
  • Eschrich J, Meyer R, Kuk H, Wagner AH, Noppeney T, Debus S, et al. Varicose Remodeling of Veins Is Suppressed by 3‐Hydroxy‐3‐Methylglutaryl Coenzyme A Reductase Inhibitors. J Am Heart Assoc. 2016;5(2):pii e002405.
  • Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH. The Effect of Pressure-Induced Mechanical Stretch on Vascular Wall Differential Gene Expression. J Vasc Res. 2012;49(6):463–78.
  • Serralheiro P, Cairrão E, Maia CJ, João M, Almeida CMC, Verde I. Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its significance on chronic venous insufficiency. Phlebol J Venous Dis. 2017;32(5):334–41.
  • Tisato V, Zauli G, Voltan R, Gianesini S, Iasio MG di, Volpi I, et al. Endothelial Cells Obtained from Patients Affected by Chronic Venous Disease Exhibit a Pro-Inflammatory Phenotype. PLoS One. 2012;7(6):e39543.
  • Shadrina A, Voronina E, Smetanina M, Tsepilov Y, Sevost’ianova K, Shevela A, et al. Polymorphisms in inflammation-related genes and the risk of primary varicose veins in ethnic Russians. Immunol Res. 2018;66(1):141–50.
  • Lattimer CR, Kalodiki E, Geroulakos G, Hoppensteadt D, Fareed J. Are Inflammatory Biomarkers Increased in Varicose Vein Blood? Clin Appl Thromb. 2016;22(7):656–64.
  • Tisato V, Zauli G, Gianesini S, Menegatti E, Brunelli L, Manfredini R, et al. Modulation of Circulating Cytokine-Chemokine Profile in Patients Affected by Chronic Venous Insufficiency Undergoing Surgical Hemodynamic Correction. J Immunol Res. 2014;2014:1–10.
  • Grudzińska E, Lekstan A, Szliszka E, Czuba ZP. Cytokines Produced by Lymphocytes in the Incompetent Great Saphenous Vein. Mediators Inflamm. 2018;2018:1–8.
  • del Rio Solá L, Aceves M, Dueñas AI, González-Fajardo JA, Vaquero C, Sanchez Crespo M, et al. Varicose Veins Show Enhanced Chemokine Expression. Eur J Vasc Endovasc Surg. 2009;38(5):635–41.
  • Charpentier MS, Dorr KM, Conlon FL. Transcriptional regulation of blood vessel formation. Cell Cycle 2013;12:2165–2166.

Views

Abstract - 24

PDF (Russian) - 0

PDF (Russian) - 0

PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies