Varicose veins: on the verge of discovering the cause?

Cover Page
  • Authors: Zolotukhin I.A.1,2, Porembskaya O.Y.3,4, Smetanina M.A.2,5, Sazhin A.V.1, Filipenko M.L.2,5, Kirienko A.I.1
  • Affiliations:
    1. Pirogov Russian National Research Medical University
    2. Institute of Experimental Medicine
    3. Institute of Chemical Biology and Fundamental Medicine SB RAS
    4. North-Western State Medical University named after I.I. Mechnikov
    5. Novosibirsk State University
  • Issue: Vol 75, No 1 (2020)
  • Pages: 36-45
  • Section: CARDIOLOGY AND CARDIOVASCULAR SURGERY: CURRENT ISSUES
  • URL: https://vestnikramn.spr-journal.ru/jour/article/view/1213
  • DOI: https://doi.org/10.15690/vramn1213
  • Cite item
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Varicose veins of the lower limbs are one of the most common and wide-spread pathology all around the world. What triggers the specific changes in a vein wall still remains unclear as well as what happens in the layers of the vein wall after the disease starts. The aim of the article is to analyze published data and results of researches on epidemiology, genetics, cellular and molecular mechanisms underlying varicose veins pathogenesis. It is now commonly accepted that vein wall changes in patients with varicose veins result from vein-specific inflammation. This process includes leukocytes adhesion to venous endothelium with their subsequent migration into the vein wall and surrounding tissues. Activated leukocytes express a number of molecules that lead to vein wall remodeling and dilation. Comprehensive assessment of the epidemiological data on the prevalence of varicose veins and risk factors, of the findings from genetic studies, of data on molecular-cell interactions as well as results of various surgical interventions in patients with varicose veins, shows that remodeling is a reversible process that can be stopped and reversed by different stimuli including some chemical substances. For the first time in the literature, the authors assume that varicose veins can be successfully cured pharmacologically with no surgical interventions needed.


Full Text

Restricted Access

About the authors

Igor A. Zolotukhin

Pirogov Russian National Research Medical University; Institute of Experimental Medicine

Email: zoloto70@bk.ru
ORCID iD: 0000-0002-6563-0471
SPIN-code: 3426-2981

Russian Federation, 1, Ostrovityanova street, Moscow, 117997; 8, Lavrentyeva prospect, Novosibirsk, 630090

MD, PhD, Professor

Olga Ya. Porembskaya

Institute of Chemical Biology and Fundamental Medicine SB RAS; North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: porembskaya@yandex.ru
ORCID iD: 0000-0003-3537-7409
SPIN-code: 9775-1057
https://phlebounion.ru/my/

Russian Federation, 12, Academic Pavlov street, Saint-Petersburg, 197376; 41, Kirochnaya street, Saint-Petersburg, 191015

MD, PhD

Mariya A. Smetanina

Institute of Experimental Medicine; Novosibirsk State University

Email: mariya_smetanina@niboch.nsc.ru
ORCID iD: 0000-0001-6080-4615
SPIN-code: 6045-9880

Russian Federation, 8, Lavrentyeva prospect, Novosibirsk, 630090; 52, Krasny prospect, Novosibirsk, 630091

PhD

Aleksandr V. Sazhin

Pirogov Russian National Research Medical University

Email: sazhin-av@yandex.ru
ORCID iD: 0000-0001-6188-6093
SPIN-code: 7064-6369

Russian Federation, 1, Ostrovityanova street, Moscow, 117997

MD, PhD, Professor

Maksim L. Filipenko

Institute of Experimental Medicine; Novosibirsk State University

Email: max@niboch.nsc.ru
ORCID iD: 0000-0002-8950-5368
SPIN-code: 4025-0533

Russian Federation, 8, Lavrentyeva prospect, Novosibirsk, 630090; 52, Krasny prospect, Novosibirsk, 630091

PhD

Aleksandr I. Kirienko

Pirogov Russian National Research Medical University

Email: aik1910@mail.ru
ORCID iD: 0000-0001-8792-1694
SPIN-code: 8319-5682

Russian Federation, 1, Ostrovityanova street, Moscow, 117997

MD, PhD, Professor

References

  1. Селиверстов Е.И., Авакъянц И.П., Никишков А.С., Золотухин И.А. Эпидемиология хронических заболеваний вен // Флебология. ― 2016. ― Т.10. ― №1. ― С. 35−43. [Seliverstov EI, Avak’yants IP, Nikishkov AS, Zolotukhin IA. Epidemiology of chronic venous disease. Flebologiia. 2016;10(1):35−43 (In Russ).]
  2. Robertson L, Evans C, Fowkes FG. Epidemiology of chronic venous disease. Phlebology. 2008;23(3):103–111. doi: 10.1258/phleb.2007.007061.
  3. Richardson JB, Dixon M. Varicose veins in tropical Africa. Lancet. 1977;1(8015):791–792. doi: 10.1016/s0140-6736(77)92971-3.
  4. Kakande I. Varicose veins in Africans as seen at Kenyatta National Hospital, Nairobi. East Afr Med J. 1981;58(9):667–676.
  5. Stanhope JM. Varicose veins in a population of lowland New Guinea. Int J Epidemiol. 1975;4(3):221–225. doi: 10.1093/ije/4.3.221.
  6. Beaglehole R, Prior IA, Salmond CE, Davidson F. Varicose veins in the South Pacific. Int J Epidemiol. 1975;4(4):295–299. doi: 10.1093/ije/4.4.295.
  7. Bawakid KO, Al-Raddadi RM, Sabban SS, et al. Prevalence of chronic venous insufficiency in the Saudi adult population. Saudi Med J. 2005;26(2):225–229.
  8. Zolotukhin IA, Seliverstov EI, Shevtsov YN, et al. Prevalence and risk factors for chronic venous disease in the general Russian population. Eur J Vasc Endovasc Surg. 2017;54(6):752–758. doi: 10.1016/j.ejvs.2017.08.033.
  9. Evans CJ, Fowkes FG, Ruckley CV, Lee AJ. Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study. J Epidemiol Community Health. 1999;53(3):149–153. doi: 10.1136/jech.53.3.149.
  10. Criqui MH, Jamosmos M, Fronek A, et al. Chronic venous disease in an ethnically diverse population: the San Diego Population Study. Am J Epidemiol. 2003;158(5):448–456. doi: 10.1093/aje/kwg166.
  11. Cornu-Thenard A, Boivin P, Baud JM, et al. Importance of the familial factor in varicose disease. Clinical study of 134 families. J Dermatol Surg Oncol. 1994;20(5):318–326. doi: 10.1111/j.1524-4725.1994.tb01631.x.
  12. Zöller B, Ji J, Sundquist J, Sundquist K. Family history and risk of hospital treatment for varicose veins in Sweden. Br J Surg. 2012;99(7):948–953. doi: 10.1002/bjs.8779.
  13. Criqui MH, Denenberg JO, Bergan J, et al. Risk factors for chronic venous disease: the San Diego Population Study. J Vasc Surg. 2007;46(2):331–337. doi: 10.1016/j.jvs.2007.03.052.
  14. Surendran S, Girijamma A, Nair R, et al. Forkhead box C2 promoter variant c.-512C>T is associated with increased susceptibility to chronic venous diseases. PLoS One. 2014;9(3):e90682. doi: 10.1371/journal.pone.0090682.
  15. Шадрина А.С, Золосухин И.А., Филипенко М.Л. Молекулярные механизмы развития варикозной болезни нижних конечностей // Флебология. ― 2017. ― Т.11. ― №2. ― С. 71−75. [Shadrina AS, Zolotukhin IA, Filipenko ML. Molecular mechanisms underlying the development of varicose veins of low extremities. Flebologiia. 2017;11(2):71−75. (In Russ).] doi: 10.17116/flebo201711271-75.
  16. Shadrina AS, Smetanina MA, Sokolova EA, et al. Association of polymorphisms near the FOXC2 gene with the risk of varicose veins in ethnic Russians. Phlebology. 2016;31(9):640–648. doi: 10.1177/0268355515607404.
  17. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–311. doi: 10.1093/nar/29.1.308.
  18. Ridderstrale M, Carlsson E, Klannemark M, et al. FOXC2 mRNA expression and a 5’ untranslated region polymorphism of the gene are associated with insulin resistance. Diabetes. 2002;51(12):3554–3560. doi: 10.2337/diabetes.51.12.3554.
  19. Osawa H, Onuma H, Murakami A, et al. Systematic search for single nucleotide polymorphisms in the FOXC2 gene: the absence of evidence for the association of three frequent single nucleotide polymorphisms and four common haplotypes with Japanese type 2 diabetes. Diabetes. 2003;52(2):562–567. doi: 10.2337/diabetes.52.2.562.
  20. Shadrina A, Tsepilov Y, Smetanina M, et al. Polymorphisms of genes involved in inflammation and blood vessel development influence the risk of varicose veins. Clin Genet. 2018;94(2):191–199. doi: 10.1111/cge.13362.
  21. Zamboni P, Tognazzo S, Izzo M, et al. Hemochromatosis C282Y gene mutation increases the risk of venous leg ulceration. J Vasc Surg. 2005;42(2):309–314. doi: 10.1016/j.jvs.2005.04.003.
  22. Sokolova EA, Shadrina AS, Sevost’ianova KS, et al. HFE p.C282Y gene variant is associated with varicose veins in Russian population. Clin Exp Med. 2016;16(3):463–470. doi: 10.1007/s10238-015-0377-y.
  23. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;7(3):165–197. doi: 10.1677/erc.0.0070165.
  24. Kowalewski R, Malkowski A, Sobolewski K, Gacko M. Evaluation of aFGF/bFGF and FGF signaling pathway in the wall of varicose veins. J Surg Res. 2009;155(1):165–172. doi: 10.1016/j.jss.2008.07.032.
  25. Karban AS, Okazaki T, Panhuysen CI, et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet. 2004;13(1):35–45.doi: 10.1093/hmg/ddh008.
  26. Gautam A, Gupta S, Mehndiratta M, et al. Association of NFKB1 gene polymorphism (rs28362491) with levels of inflammatory biomarkers and susceptibility to diabetic nephropathy in Asian Indians. World J Diabetes. 2017;8(2):66−73. doi: 10.4239/wjd.v8.i2.66.
  27. Shadrina AS, Smetanina MA, Sevost’ianova KS, et al. Functional polymorphism rs1024611 in the MCP1 gene is associated with the risk of varicose veins of lower extremities. J Vasc Surg Venous Lymphat Disord. 2017;5(4):561–566. doi: 10.1016/j.jvsv.2016.12.008.
  28. Smetanina MA, Kel AE, Sevost’ianova KS, et al. DNA methylation and gene expression profiling reveal MFAP5 as a regulatory driver of extracellular matrix remodeling in varicose vein disease. Epigenomics. 2018;10(8):1103–1119. doi: 10.2217/epi-2018-0001.
  29. Паткин Е.Д., Софронов Г.А. Эпигенетика популяций, экотоксикогенетика и болезни человека // Экологическая генетика. ― 2012. ― Т.10. ― №4. ― С. 14–28. [Patkin EL, Sofronof GA. Population epigenetics, ecotoxicology and human diseases. Ecological genetics. 2012;10(4):14–28. (In Russ).]
  30. Сметанина М.А., Шадрина А.С., Золотухин И.А., и др. Дифференциальная экспрессия генов при варикозной болезни нижних конечностей: современное состояние проблемы, анализ опубликованных данных // Флебология. ― 2017. ― Т.11. ― №4. ― С. 190−204. [Smetanina MA, Shadrina AS, Zolotukhin IA, et al. Differentially expressed genes in varicose veins disease: current state of the problem, analysis of the published data. Flebologiia. 2017;11(4):190−204. (In Russ).] doi: 10.17116/flebo2017114190-202.
  31. Kun L, Ying L, Lei W, et al. Dysregulated apoptosis of the venous wall in chronic venous disease and portal hypertension. Phlebol J Venous Dis. 2016;31(10):729–736. doi: 10.1177/0268355515610237.
  32. Xu Y, Bei Y, Li Y, Chu H. Phenotypic and functional transformation in smooth muscle cells derived from varicose veins. J Vasc Surg Venous Lymphat Disord. 2017;5(5):723–733. doi: 10.1016/j.jvsv.2017.04.009.
  33. Lim CS, Gohel MS, Shepherd AC, et al. Venous hypoxia: a poorly studied etiological factor of varicose veins. J Vasc Res. 2011;48(3):185–194. doi: 10.1159/000320624.
  34. Lee JD, Yang WK, Lee TH. Increased expression of hypoxia-inducible factor-1 alpha and Bcl-2 in varicocele and varicose veins. Ann Vasc Surg. 2012;26(8):1100–1105. doi: 10.1016/j.avsg.2011.12.014.
  35. Chen S, Qin S, Wang M, Zhang S. Expression and significance of NELIN and SM22α in varicose vein tissue. Exp Ther Med. 2015;9(3):845–849. doi: 10.3892/etm.2015.2170.
  36. Ghaderian SM, Khodaii Z. Tissue remodeling investigation in varicose veins. Int J Mol Cell Med. 2012;1(1):50–61.
  37. Chastanet S, Pittaluga P. Patterns of reflux in the great saphenous vein system. Phlebology. 2013;28(1 Suppl):39–46. doi: 10.1177/0268355513477021.
  38. Puleo V, Castagno PL. Progression of superficial venous insufficiency: analysis and implications for therapy. J Vasc Diagnostics. 2013;2013(1):5−11. doi: 10.2147/jvd.s49005.
  39. Bernardini E, De Rango P, Piccioli R, et al. Development of primary superficial venous insufficiency: the ascending theory. Observational and hemodynamic data from a 9-year experience. Ann Vasc Surg. 2010;24(6):709–720. doi: 10.1016/j.avsg.2010.01.011.
  40. Mowatt-Larssen E, Shortell C. CHIVA. Semin Vasc Surg. 2010;23(2):118–122. doi: 0.1053/j.semvascsurg.2010.01.008.
  41. Onida S, Davies AH. CHIVA, ASVAL and related techniques ― concepts and evidence. Phlebol J Venous Dis. 2015;30(2 Suppl):42–45. doi: 10.1177/0268355515591439.
  42. Bellmunt-Montoya S, Escribano JM, Dilme J, Martinez-Zapata MJ. CHIVA method for the treatment of chronic venous insufficiency. Cochrane Database Syst Rev. 2015;(6):CD009648. doi: 10.1002/14651858.CD009648.pub3.
  43. Zamboni P, Cisno C, Marchetti F, et al. Minimally invasive surgical management of primary venous ulcers vs. compression treatment: a randomized clinical trial. Eur J Vasc Endovasc Surg. 2003;25(4):313–318. doi: 10.1053/ejvs.2002.1871.
  44. Воронцова А.В., Лобастов К.В., Лаберко Л.А., Баринов В.Е. Возможности купирования рефлюкса по стволу большой подкожной вены при эндовазальной лазерной коагуляции перфорантной вены и (или) склеротерапии варикозного притока: результаты проспективного сравнительного исследования // Хирург. ― 2018. ― №11-12. ― С. 51–65. [Vorontsova AV, Lobastov KV, Laberko LA, Barinov VE. Opportunities to reduce reflux in the great saphenous vein with endovascular laser coagulation of the perforating vein and/or sclerotherapy of varicose tributaries: results of prospective comparative study. Khirurg. 2018;(11-12):51–65. (In Russ).]
  45. Zolotukhin IA, Seliverstov EI, Zakharova EA, Kirienko AI. Short-term results of isolated phlebectomy with preservation of incompetent great saphenous vein (ASVAL procedure) in primary varicose veins disease. Phlebol J Venous Dis. 2017;32(9):601–607. doi: 10.1177/0268355516674415.
  46. Pittaluga P, Chastanet S, Rea B, Barbe R. Midterm results of the surgical treatment of varices by phlebectomy with conservation of a refluxing saphenous vein. J Vasc Surg. 2009;50(1):107–118. doi: 10.1016/j.jvs.2008.12.067.
  47. Biemans AA, van den Bos RR, Hollestein LM, et al. The effect of single phlebectomies of a large varicose tributary on great saphenous vein reflux. J Vasc Surg Venous Lymphat Disord. 2014;2(2):179–187. doi: 10.1016/j.jvsv.2013.11.003.
  48. Görmüş U, Kahraman OT, Isbir S, et al. MMP2 gene polymorphisms and MMP2 mRNA levels in patients with superficial varices of lower extremities. In Vivo. 2011;25(3):387–391.
  49. Charpentier MS, Dorr KM, Conlon FL. Transcriptional regulation of blood vessel formation. Cell Cycle. 2013;12(14):2165–2166. doi: 10.4161/cc.25539.
  50. Charpentier MS, Taylor JM, Conlon FL. The CASZ1/ Egfl7 transcriptional pathway is required for RhoA expression in vascular endothelial cells. Small GTPases. 2013;4(4):231–235. doi: 10.4161/sgtp.26849.
  51. Pfisterer L, König G, Hecker M, Korff T. Pathogenesis of varicose veins ― lessons from biomechanics. Vasa. 2014;43(2):88–99. doi: 10.1024/0301-1526/a000335.
  52. Eschrich J, Meyer R, Kuk H, et al. Varicose remodeling of veins is suppressed by 3‐hydroxy‐3‐methylglutaryl coenzyme a reductase inhibitors. J Am Heart Assoc. 2016;5(2). pii: e002405. doi: 10.1161/JAHA.115.002405.
  53. Anwar MA, Shalhoub J, Lim CS, et al. The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res. 2012;49(6):463–478. doi: 10.1159/000339151.
  54. Serralheiro P, Cairrão E, Maia CJ, et al. Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its significance on chronic venous insufficiency. Phlebol J Venous Dis. 2017;32(5):334–341. doi: 10.1177/0268355516655067.
  55. Tisato V, Zauli G, Voltan R, et al. Endothelial cells obtained from patients affected by chronic venous disease exhibit a pro-inflammatory phenotype. PLoS One. 2012;7(6):e39543. doi: 10.1371/journal.pone.0039543.
  56. Shadrina A, Voronina E, Smetanina M, et al. Polymorphisms in inflammation-related genes and the risk of primary varicose veins in ethnic Russians. Immunol Res. 2018;66(1):141–150. doi: 10.1007/s12026-017-8981-4.
  57. Lattimer CR, Kalodiki E, Geroulakos G, et al. Are inflammatory biomarkers increased in varicose vein blood? Clin Appl Thromb. 2016;22(7):656–664. doi: 10.1177/1076029616645330.
  58. Tisato V, Zauli G, Gianesini S, et al. Modulation of circulating cytokine-chemokine profile in patients affected by chronic venous insufficiency undergoing surgical hemodynamic correction. J Immunol Res. 2014;2014:473765. doi: 10.1155/2014/473765.
  59. Grudzińska E, Lekstan A, Szliszka E, Czuba ZP. Cytokines produced by lymphocytes in the incompetent great saphenous vein. Mediators Inflamm. 2018;2018:7161346. doi: 10.1155/2018/7161346.
  60. Del Rio Solá L, Aceves M, Dueñas AI, et al. Varicose veins show enhanced chemokine expression. Eur J Vasc Endovasc Surg. 2009;38(5):635–641. doi: 10.1016/j.ejvs.2009.07.021.

Supplementary files

Supplementary Files Action
1.
Fig. 1. Varicose veins in a 32-year-old patient with varicose veins. A typical version of the clinical picture (own observations)

Download (97KB) Indexing metadata
2.
Fig. 2. Changes in the diameter of the large saphenous vein (1) at the place of its confluence with the femoral (2) in the patient before and after surgery (own observations)

Download (113KB) Indexing metadata
3.
Fig. 3. Regression of varicose saphenous vein transformation in a 30-year-old patient with varicose veins 4 months after venous ligation in several places, without removing the affected vessels (own observations)

Download (115KB) Indexing metadata

Statistics

Views

Abstract - 691

PDF (Russian) - 3

Cited-By


PlumX

Dimensions



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies